Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
y=(3x^(-3)+9)(-6-2x-7x^(3)), find 
(dy)/(dx) in any form.
Answer: 
(dy)/(dx)=

Given the function y=(3x3+9)(62x7x3) y=\left(3 x^{-3}+9\right)\left(-6-2 x-7 x^{3}\right) , find dydx \frac{d y}{d x} in any form.\newlineAnswer: dydx= \frac{d y}{d x}=

Full solution

Q. Given the function y=(3x3+9)(62x7x3) y=\left(3 x^{-3}+9\right)\left(-6-2 x-7 x^{3}\right) , find dydx \frac{d y}{d x} in any form.\newlineAnswer: dydx= \frac{d y}{d x}=
  1. Apply Product Rule: Apply the product rule to find the derivative of the product of two functions.\newlineThe product rule states that (ddx)[u(x)v(x)]=u(x)v(x)+u(x)v(x)(\frac{d}{dx})[u(x)v(x)] = u'(x)v(x) + u(x)v'(x), where u(x)u(x) and v(x)v(x) are functions of xx.\newlineLet u(x)=3x3+9u(x) = 3x^{-3} + 9 and v(x)=62x7x3v(x) = -6 - 2x - 7x^{3}.
  2. Find u(x)u'(x): Find the derivative of u(x)u(x) with respect to xx.
    u(x)=ddx[3x3+9]=ddx[3x3]+ddx[9]u'(x) = \frac{d}{dx}[3x^{-3} + 9] = \frac{d}{dx}[3x^{-3}] + \frac{d}{dx}[9]
    u(x)=9x4+0u'(x) = -9x^{-4} + 0
    u(x)=9x4u'(x) = -9x^{-4}
  3. Find v(x)v'(x): Find the derivative of v(x)v(x) with respect to xx.
    v(x)=ddx[62x7x3]=ddx[6]ddx[2x]ddx[7x3]v'(x) = \frac{d}{dx}[-6 - 2x - 7x^{3}] = \frac{d}{dx}[-6] - \frac{d}{dx}[2x] - \frac{d}{dx}[7x^{3}]
    v(x)=0221x2v'(x) = 0 - 2 - 21x^{2}
    v(x)=221x2v'(x) = -2 - 21x^{2}
  4. Apply Product Rule with Derivatives: Apply the product rule using the derivatives u(x)u'(x) and v(x)v'(x). \newlinedydx=u(x)v(x)+u(x)v(x)\frac{dy}{dx} = u'(x)v(x) + u(x)v'(x)\newlinedydx=(9x4)(62x7x3)+(3x3+9)(221x2)\frac{dy}{dx} = (-9x^{-4})(-6 - 2x - 7x^{3}) + (3x^{-3} + 9)(-2 - 21x^{2})
  5. Simplify Expression: Simplify the expression by distributing and combining like terms.\newline(dy)/(dx)=54x4+18x3+63x16x31863x2(dy)/(dx) = 54x^{-4} + 18x^{-3} + 63x^{-1} - 6x^{-3} - 18 - 63x^{2}\newline(dy)/(dx)=54x4+(18x36x3)+63x11863x2(dy)/(dx) = 54x^{-4} + (18x^{-3} - 6x^{-3}) + 63x^{-1} - 18 - 63x^{2}\newline(dy)/(dx)=54x4+12x3+63x11863x2(dy)/(dx) = 54x^{-4} + 12x^{-3} + 63x^{-1} - 18 - 63x^{2}

More problems from Transformations of quadratic functions