Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
y=(10x^(-1)+10+8x^(-3))(9x^(2)-5), find 
(dy)/(dx) in any form.
Answer: 
(dy)/(dx)=

Given the function y=(10x1+10+8x3)(9x25) y=\left(10 x^{-1}+10+8 x^{-3}\right)\left(9 x^{2}-5\right) , find dydx \frac{d y}{d x} in any form.\newlineAnswer: dydx= \frac{d y}{d x}=

Full solution

Q. Given the function y=(10x1+10+8x3)(9x25) y=\left(10 x^{-1}+10+8 x^{-3}\right)\left(9 x^{2}-5\right) , find dydx \frac{d y}{d x} in any form.\newlineAnswer: dydx= \frac{d y}{d x}=
  1. Apply Product Rule: We are given the function y=(10x1+10+8x3)(9x25)y=(10x^{-1}+10+8x^{-3})(9x^{2}-5). To find the derivative dydx\frac{dy}{dx}, we will use the product rule, which states that the derivative of a product of two functions is the derivative of the first function times the second function plus the first function times the derivative of the second function.
  2. Find Derivatives: Let's denote the first function as f(x)=10x1+10+8x3f(x) = 10x^{-1} + 10 + 8x^{-3} and the second function as g(x)=9x25g(x) = 9x^{2} - 5. We will first find the derivatives f(x)f'(x) and g(x)g'(x).
  3. Use Power Rule: The derivative of f(x)f(x) with respect to xx is f(x)=ddx(10x1+10+8x3)f'(x) = \frac{d}{dx} (10x^{-1} + 10 + 8x^{-3}). Using the power rule, we get f(x)=10x224x4f'(x) = -10x^{-2} - 24x^{-4}.
  4. Apply Product Rule: The derivative of g(x)g(x) with respect to xx is g(x)=ddx(9x25)g'(x) = \frac{d}{dx} (9x^{2} - 5). Using the power rule, we get g(x)=18xg'(x) = 18x.
  5. Simplify Expression: Now, we apply the product rule: f(x)g(x))' = f'(x)g(x) + f(x)g'(x)\. Substituting the derivatives we found, we get \$\frac{dy}{dx} = (-10x^{-2} - 24x^{-4})(9x^{2} - 5) + (10x^{-1} + 10 + 8x^{-3})(18x).
  6. Combine Like Terms: We simplify the expression by multiplying the terms: (dydx=(90x2+50x2216x4+120x4)+(180x1+180+144x3))(\frac{dy}{dx} = (-90x^{-2} + 50x^{-2} - 216x^{-4} + 120x^{-4}) + (180x^{-1} + 180 + 144x^{-3})).
  7. Further Simplification: Combine like terms: (dydx=(40x296x4)+(180x1+180+144x3)).(\frac{dy}{dx} = (-40x^{-2} - 96x^{-4}) + (180x^{-1} + 180 + 144x^{-3})).
  8. Final Answer: Further simplification gives us: (dydx=40x296x4+180x1+180+144x3)(\frac{dy}{dx} = -40x^{-2} - 96x^{-4} + 180x^{-1} + 180 + 144x^{-3}).
  9. Final Answer: Further simplification gives us: (dy)/(dx)=40x296x4+180x1+180+144x3(dy)/(dx) = -40x^{-2} - 96x^{-4} + 180x^{-1} + 180 + 144x^{-3}.We can write the final answer in a more simplified form by ordering the terms according to the powers of x: (dy)/(dx)=180x140x2+144x396x4+180(dy)/(dx) = 180x^{-1} - 40x^{-2} + 144x^{-3} - 96x^{-4} + 180.

More problems from Multiplication with rational exponents