Q. Given the function h(x)=−x2−9x+23, determine the average rate of change of the function over the interval −7≤x≤1.Answer:
Given Function: We have the function h(x)=−x2−9x+23. To find the average rate of change over the interval [−7,1], we will use the formula for the average rate of change, which is (h(b)−h(a))/(b−a), where a and b are the endpoints of the interval.
Calculate h(−7): First, we need to find the value of h(−7). We substitute x=−7 into the function h(x). h(−7)=−(−7)2−9(−7)+23 h(−7)=−(49)+63+23 h(−7)=−49+63+23 h(−7)=14+23 h(−7)=37
Calculate h(1): Next, we need to find the value of h(1). We substitute x=1 into the function h(x). h(1)=−(1)2−9(1)+23 h(1)=−1−9+23 h(1)=−10+23 h(1)=13
Average Rate of Change: Now we have h(−7)=37 and h(1)=13. We can use these values to calculate the average rate of change over the interval [−7,1].Average rate of change = (h(1)−h(−7))/(1−(−7))Average rate of change = (13−37)/(1+7)Average rate of change = (−24)/8Average rate of change = −3