Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
h(x)=-x^(2)+7x+20, determine the average rate of change of the function over the interval 
-2 <= x <= 9.
Answer:

Given the function h(x)=x2+7x+20 h(x)=-x^{2}+7 x+20 , determine the average rate of change of the function over the interval 2x9 -2 \leq x \leq 9 .\newlineAnswer:

Full solution

Q. Given the function h(x)=x2+7x+20 h(x)=-x^{2}+7 x+20 , determine the average rate of change of the function over the interval 2x9 -2 \leq x \leq 9 .\newlineAnswer:
  1. Given Function: We have the function h(x)=x2+7x+20h(x) = -x^2 + 7x + 20. We need to find the average rate of change over the interval [2,9][-2, 9].\newlineThe average rate of change formula is (h(b)h(a))/(ba)(h(b) - h(a)) / (b - a), where aa and bb are the endpoints of the interval.\newlineIn this case, a=2a = -2 and b=9b = 9.
  2. Calculate h(2)h(-2): First, we find the value of h(2)h(-2).\newlineSubstitute 2-2 for xx in the function h(x)h(x).\newlineh(2)=(2)2+7(2)+20h(-2) = -(-2)^2 + 7(-2) + 20\newlineh(2)=414+20h(-2) = -4 - 14 + 20\newlineh(2)=2h(-2) = 2
  3. Calculate h(9)h(9): Next, we find the value of h(9)h(9). Substitute 99 for xx in the function h(x)h(x). h(9)=(9)2+7(9)+20h(9) = -(9)^2 + 7(9) + 20 h(9)=81+63+20h(9) = -81 + 63 + 20 h(9)=81+83h(9) = -81 + 83 h(9)=2h(9) = 2
  4. Calculate Average Rate of Change: Now we have both h(2)h(-2) and h(9)h(9). We can calculate the average rate of change.\newlineAverage rate of change = h(9)h(2)9(2)\frac{h(9) - h(-2)}{9 - (-2)}\newlineAverage rate of change = 229+2\frac{2 - 2}{9 + 2}\newlineAverage rate of change = 011\frac{0}{11}\newlineAverage rate of change = 00

More problems from Average rate of change