Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
h(x)=x^(2)+6x+3, determine the average rate of change of the function over the interval 
-8 <= x <= -2.
Answer:

Given the function h(x)=x2+6x+3 h(x)=x^{2}+6 x+3 , determine the average rate of change of the function over the interval 8x2 -8 \leq x \leq-2 .\newlineAnswer:

Full solution

Q. Given the function h(x)=x2+6x+3 h(x)=x^{2}+6 x+3 , determine the average rate of change of the function over the interval 8x2 -8 \leq x \leq-2 .\newlineAnswer:
  1. Define Function: We have the function h(x)=x2+6x+3h(x) = x^2 + 6x + 3. To find the average rate of change over the interval [8,2][-8, -2], we will use the formula for the average rate of change, which is (h(b)h(a))/(ba)(h(b) - h(a)) / (b - a), where aa and bb are the endpoints of the interval.
  2. Find h(8)h(-8): First, we need to find the value of h(8)h(-8). We substitute xx with 8-8 in the function h(x)h(x).\newlineh(8)=(8)2+6(8)+3h(-8) = (-8)^2 + 6*(-8) + 3\newlineh(8)=6448+3h(-8) = 64 - 48 + 3\newlineh(8)=19h(-8) = 19
  3. Find h(2)h(-2): Next, we need to find the value of h(2)h(-2). We substitute xx with 2-2 in the function h(x)h(x).
    h(2)=(2)2+6(2)+3h(-2) = (-2)^2 + 6*(-2) + 3
    h(2)=412+3h(-2) = 4 - 12 + 3
    h(2)=5h(-2) = -5
  4. Calculate Average Rate of Change: Now we have both h(8)h(-8) and h(2)h(-2). We can calculate the average rate of change using the values we found.\newlineAverage rate of change = h(2)h(8)2(8)\frac{h(-2) - h(-8)}{-2 - (-8)}\newlineAverage rate of change = 5192(8)\frac{-5 - 19}{-2 - (-8)}\newlineAverage rate of change = 5196\frac{-5 - 19}{6}\newlineAverage rate of change = 246\frac{-24}{6}\newlineAverage rate of change = 4-4

More problems from Average rate of change