Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
g(x)=x^(2)+8x+12, determine the average rate of change of the function over the interval 
-10 <= x <= -1.
Answer:

Given the function g(x)=x2+8x+12 g(x)=x^{2}+8 x+12 , determine the average rate of change of the function over the interval 10x1 -10 \leq x \leq-1 .\newlineAnswer:

Full solution

Q. Given the function g(x)=x2+8x+12 g(x)=x^{2}+8 x+12 , determine the average rate of change of the function over the interval 10x1 -10 \leq x \leq-1 .\newlineAnswer:
  1. Given function: We are given the function g(x)=x2+8x+12g(x) = x^2 + 8x + 12. To find the average rate of change over the interval [10,1][-10, -1], we will use the formula for the average rate of change, which is (g(b)g(a))/(ba)(g(b) - g(a)) / (b - a), where aa and bb are the endpoints of the interval.
  2. Find g(10)g(-10): First, we need to find the value of g(10)g(-10). We substitute x=10x = -10 into the function g(x)g(x).\newlineg(10)=(10)2+8(10)+12g(-10) = (-10)^2 + 8*(-10) + 12\newlineg(10)=10080+12g(-10) = 100 - 80 + 12\newlineg(10)=32g(-10) = 32
  3. Find g(1)g(-1): Next, we need to find the value of g(1)g(-1). We substitute x=1x = -1 into the function g(x)g(x).\newlineg(1)=(1)2+8(1)+12g(-1) = (-1)^2 + 8*(-1) + 12\newlineg(1)=18+12g(-1) = 1 - 8 + 12\newlineg(1)=5g(-1) = 5
  4. Calculate average rate of change: Now we have the values g(10)=32g(-10) = 32 and g(1)=5g(-1) = 5. We can calculate the average rate of change using the formula (g(b)g(a))/(ba)(g(b) - g(a)) / (b - a) with a=10a = -10 and b=1b = -1.\newlineAverage rate of change = (g(1)g(10))/(1(10))(g(-1) - g(-10)) / (-1 - (-10))\newlineAverage rate of change = (532)/(9)(5 - 32) / (9)\newlineAverage rate of change = 27/9-27 / 9\newlineAverage rate of change = 3-3

More problems from Average rate of change