Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
g(x)=-x^(2)+4x+10, determine the average rate of change of the function over the interval 
-1 <= x <= 3.
Answer:

Given the function g(x)=x2+4x+10 g(x)=-x^{2}+4 x+10 , determine the average rate of change of the function over the interval 1x3 -1 \leq x \leq 3 .\newlineAnswer:

Full solution

Q. Given the function g(x)=x2+4x+10 g(x)=-x^{2}+4 x+10 , determine the average rate of change of the function over the interval 1x3 -1 \leq x \leq 3 .\newlineAnswer:
  1. Define function g(x)g(x): We have the function g(x)=x2+4x+10g(x) = -x^2 + 4x + 10. To find the average rate of change over the interval [1,3][-1, 3], we will use the formula for the average rate of change, which is (g(b)g(a))/(ba)(g(b) - g(a)) / (b - a), where aa and bb are the endpoints of the interval.
  2. Find g(1)g(-1): First, we need to find the value of g(1)g(-1). We substitute x=1x = -1 into the function g(x)g(x):g(1)=(1)2+4(1)+10=14+10=5.g(-1) = -(-1)^2 + 4(-1) + 10 = -1 - 4 + 10 = 5.
  3. Find g(3)g(3): Next, we need to find the value of g(3)g(3). We substitute x=3x = 3 into the function g(x)g(x):g(3)=(3)2+4(3)+10=9+12+10=13.g(3) = -(3)^2 + 4(3) + 10 = -9 + 12 + 10 = 13.
  4. Calculate average rate of change: Now we have g(1)=5g(-1) = 5 and g(3)=13g(3) = 13. We can calculate the average rate of change using the values of g(1)g(-1) and g(3)g(3) and the endpoints of the interval, 1-1 and 33:\newlineAverage rate of change = (g(3)g(1))/(3(1))=(135)/(3(1))=8/4=2(g(3) - g(-1)) / (3 - (-1)) = (13 - 5) / (3 - (-1)) = 8 / 4 = 2.

More problems from Average rate of change