Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=(x+8)(3x+5-3x^(2)), find 
f^(')(x) in any form.
Answer: 
f^(')(x)=

Given the function f(x)=(x+8)(3x+53x2) f(x)=(x+8)\left(3 x+5-3 x^{2}\right) , find f(x) f^{\prime}(x) in any form.\newlineAnswer: f(x)= f^{\prime}(x)=

Full solution

Q. Given the function f(x)=(x+8)(3x+53x2) f(x)=(x+8)\left(3 x+5-3 x^{2}\right) , find f(x) f^{\prime}(x) in any form.\newlineAnswer: f(x)= f^{\prime}(x)=
  1. Write Function: Write down the function to be differentiated.\newlinef(x)=(x+8)(3x+53x2)f(x) = (x + 8)(3x + 5 - 3x^2)
  2. Apply Product Rule: Apply the product rule for differentiation, which states that the derivative of a product of two functions is the derivative of the first function times the second function plus the first function times the derivative of the second function.\newlineLet u=x+8u = x + 8 and v=3x+53x2v = 3x + 5 - 3x^2. Then f(x)=uvf(x) = uv.\newlinef(x)=uv+uvf'(x) = u'v + uv'
  3. Differentiate uu: Differentiate u=x+8u = x + 8 with respect to xx.\newlineu=ddx(x+8)=1u' = \frac{d}{dx} (x + 8) = 1
  4. Differentiate vv: Differentiate v=3x+53x2v = 3x + 5 - 3x^2 with respect to xx.v=ddx(3x+53x2)=36xv' = \frac{d}{dx} (3x + 5 - 3x^2) = 3 - 6x
  5. Substitute into Formula: Substitute uu', uu, vv', and vv into the product rule formula.\newlinef(x)=uv+uv=(1)(3x+53x2)+(x+8)(36x)f'(x) = u'v + uv' = (1)(3x + 5 - 3x^2) + (x + 8)(3 - 6x)
  6. Expand Terms: Expand the terms in the expression.\newlinef(x)=(3x+53x2)+(3x+246x248x)f'(x) = (3x + 5 - 3x^2) + (3x + 24 - 6x^2 - 48x)
  7. Combine Like Terms: Combine like terms.\newlinef(x)=3x+53x2+3x+246x248xf'(x) = 3x + 5 - 3x^2 + 3x + 24 - 6x^2 - 48x\newlinef(x)=9x242x+29f'(x) = -9x^2 - 42x + 29

More problems from Multiplication with rational exponents