Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=x-(3)/(2), then what is 
f(x+2) as a simplified polynomial?
Answer:

Given the function f(x)=x32 f(x)=x-\frac{3}{2} , then what is f(x+2) f(x+2) as a simplified polynomial?\newlineAnswer:

Full solution

Q. Given the function f(x)=x32 f(x)=x-\frac{3}{2} , then what is f(x+2) f(x+2) as a simplified polynomial?\newlineAnswer:
  1. Substitute xx with (x+2)(x+2): Substitute xx with (x+2)(x+2) in the function f(x)f(x). We have the function f(x)=x32f(x) = x - \frac{3}{2}. To find f(x+2)f(x+2), we replace every xx in the function with (x+2)(x+2). f(x+2)=(x+2)32f(x+2) = (x+2) - \frac{3}{2}
  2. Simplify the expression: Simplify the expression.\newlineNow we simplify the expression by combining like terms.\newlinef(x+2)=x+232f(x+2) = x + 2 - \frac{3}{2}\newlineTo subtract 32\frac{3}{2} from 22, we need a common denominator. The common denominator is 22, so we convert 22 to 42\frac{4}{2}.\newlinef(x+2)=x+4232f(x+2) = x + \frac{4}{2} - \frac{3}{2}
  3. Combine like terms: Continue simplifying by combining the fractions.\newlineNow we subtract the fractions.\newlinef(x+2)=x+(4232)f(x+2) = x + \left(\frac{4}{2} - \frac{3}{2}\right)\newlinef(x+2)=x+12f(x+2) = x + \frac{1}{2}

More problems from Multiplication with rational exponents