Q. Given the function f(x)=−x2−x+7, determine the average rate of change of the function over the interval −4≤x≤2.Answer:
Identify formula and interval: Identify the average rate of change formula and the given interval.The average rate of change of a function f(x) over an interval [a,b] is given by the formula:Average rate of change = b−af(b)−f(a)For the given function f(x)=−x2−x+7, we need to find the average rate of change over the interval [−4,2].
Calculate f(−4): Calculate the value of f(−4).Substitute x=−4 into the function f(x) to find f(−4).f(−4)=−(−4)2−(−4)+7f(−4)=−(16)+4+7f(−4)=−16+4+7f(−4)=−12+7f(−4)=−5
Calculate f(2): Calculate the value of f(2).Substitute x=2 into the function f(x) to find f(2).f(2)=−(2)2−(2)+7f(2)=−4−2+7f(2)=−6+7f(2)=1
Use average rate of change formula: Use the average rate of change formula with the values found for f(−4) and f(2).Average rate of change = 2−(−4)f(2)−f(−4)Average rate of change = 2+41−(−5)Average rate of change = 61+5Average rate of change = 66Average rate of change = 1