Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=x^(2)+9x+12, determine the average rate of change of the function over the interval 
-5 <= x <= -1.
Answer:

Given the function f(x)=x2+9x+12 f(x)=x^{2}+9 x+12 , determine the average rate of change of the function over the interval 5x1 -5 \leq x \leq-1 .\newlineAnswer:

Full solution

Q. Given the function f(x)=x2+9x+12 f(x)=x^{2}+9 x+12 , determine the average rate of change of the function over the interval 5x1 -5 \leq x \leq-1 .\newlineAnswer:
  1. Identify average rate of change formula: Identify the average rate of change formula, which is (f(b)f(a))/(ba)(f(b) - f(a)) / (b - a), where aa and bb are the endpoints of the interval.
  2. Calculate f(5)f(-5): Calculate the value of f(5)f(-5) by substituting x=5x = -5 into the function f(x)=x2+9x+12f(x) = x^2 + 9x + 12.\newlinef(5)=(5)2+9(5)+12f(-5) = (-5)^2 + 9*(-5) + 12\newlinef(5)=2545+12f(-5) = 25 - 45 + 12\newlinef(5)=8f(-5) = -8
  3. Calculate f(1)f(-1): Calculate the value of f(1)f(-1) by substituting x=1x = -1 into the function f(x)=x2+9x+12f(x) = x^2 + 9x + 12.
    f(1)=(1)2+9(1)+12f(-1) = (-1)^2 + 9*(-1) + 12
    f(1)=19+12f(-1) = 1 - 9 + 12
    f(1)=4f(-1) = 4
  4. Use average rate of change formula: Use the average rate of change formula with f(5)=8f(-5) = -8 and f(1)=4f(-1) = 4.\newlineAverage rate of change = (f(1)f(5))/(1(5))(f(-1) - f(-5)) / (-1 - (-5))\newlineAverage rate of change = (4(8))/(1+5)(4 - (-8)) / (-1 + 5)\newlineAverage rate of change = (4+8)/4(4 + 8) / 4\newlineAverage rate of change = 12/412 / 4\newlineAverage rate of change = 33

More problems from Average rate of change