Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=(-x^(2)-8x-8)^(5), find 
f^(')(x) in any form.
Answer: 
f^(')(x)=

Given the function f(x)=(x28x8)5 f(x)=\left(-x^{2}-8 x-8\right)^{5} , find f(x) f^{\prime}(x) in any form.\newlineAnswer: f(x)= f^{\prime}(x)=

Full solution

Q. Given the function f(x)=(x28x8)5 f(x)=\left(-x^{2}-8 x-8\right)^{5} , find f(x) f^{\prime}(x) in any form.\newlineAnswer: f(x)= f^{\prime}(x)=
  1. Identify Functions: Identify the outer function and the inner function for the application of the chain rule.\newlineThe outer function is u5u^5 and the inner function is u=x28x8u = -x^2 - 8x - 8.
  2. Apply Chain Rule: Apply the chain rule which states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function.\newlineLet u=x28x8u = -x^2 - 8x - 8, then f(x)=u5f(x) = u^5.\newlineThe chain rule gives us f(x)=5u4(dudx)f'(x) = 5u^4 \cdot (\frac{du}{dx}).
  3. Calculate Derivative: Calculate the derivative of the inner function uu with respect to xx.dudx=ddx(x28x8)=2x8.\frac{du}{dx} = \frac{d}{dx}(-x^2 - 8x - 8) = -2x - 8.
  4. Substitute into Formula: Substitute the derivative of the inner function and the inner function itself into the chain rule formula. \newlinef(x)=5(x28x8)4(2x8)f'(x) = 5(-x^2 - 8x - 8)^4 \cdot (-2x - 8).
  5. Simplify Expression: Simplify the expression if necessary.\newlineIn this case, the expression is already in a simplified form, so we can state the final answer.\newlinef(x)=5(x28x8)4(2x8)f'(x) = 5(-x^2 - 8x - 8)^4 * (-2x - 8).

More problems from Find the vertex of the transformed function