Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=-x^(2)+3x+6, determine the average rate of change of the function over the interval 
-1 <= x <= 5.
Answer:

Given the function f(x)=x2+3x+6 f(x)=-x^{2}+3 x+6 , determine the average rate of change of the function over the interval 1x5 -1 \leq x \leq 5 .\newlineAnswer:

Full solution

Q. Given the function f(x)=x2+3x+6 f(x)=-x^{2}+3 x+6 , determine the average rate of change of the function over the interval 1x5 -1 \leq x \leq 5 .\newlineAnswer:
  1. Identify Rate of Change Formula: Identify the average rate of change formula, which is (f(b)f(a))/(ba)(f(b) - f(a)) / (b - a), where aa and bb are the endpoints of the interval.
  2. Calculate f(1)f(-1): Calculate the value of f(1)f(-1) by substituting x=1x = -1 into the function f(x)=x2+3x+6f(x) = -x^2 + 3x + 6.
    f(1)=(1)2+3(1)+6f(-1) = -(-1)^2 + 3(-1) + 6
    f(1)=13+6f(-1) = -1 - 3 + 6
    f(1)=2f(-1) = 2
  3. Calculate f(5)f(5): Calculate the value of f(5)f(5) by substituting x=5x = 5 into the function f(x)=x2+3x+6f(x) = -x^2 + 3x + 6.
    f(5)=(5)2+3(5)+6f(5) = -(5)^2 + 3(5) + 6
    f(5)=25+15+6f(5) = -25 + 15 + 6
    f(5)=4f(5) = -4
  4. Calculate Average Rate of Change: Use the values of f(1)f(-1) and f(5)f(5) to calculate the average rate of change over the interval [1,5][-1, 5].\newlineAverage rate of change = f(5)f(1)5(1)\frac{f(5) - f(-1)}{5 - (-1)}\newlineAverage rate of change = (42)5(1)\frac{(-4 - 2)}{5 - (-1)}\newlineAverage rate of change = 66\frac{-6}{6}\newlineAverage rate of change = 1-1

More problems from Average rate of change