Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=x^(2)+3, find the value of 
f(-(2)/(3)) in simplest form.
Answer:

Given the function f(x)=x2+3 f(x)=x^{2}+3 , find the value of f(23) f\left(-\frac{2}{3}\right) in simplest form.\newlineAnswer:

Full solution

Q. Given the function f(x)=x2+3 f(x)=x^{2}+3 , find the value of f(23) f\left(-\frac{2}{3}\right) in simplest form.\newlineAnswer:
  1. Given Function: We are given the function f(x)=x2+3f(x) = x^2 + 3 and we need to find the value of f((23))f\left(-\left(\frac{2}{3}\right)\right). First, we substitute xx with (23)-\left(\frac{2}{3}\right) in the function. f((23))=((23))2+3f\left(-\left(\frac{2}{3}\right)\right) = \left(-\left(\frac{2}{3}\right)\right)^2 + 3
  2. Substitution and Calculation: Now we calculate the square of (23)-\left(\frac{2}{3}\right).\newline((23))2=(23)×(23)=49\left(-\left(\frac{2}{3}\right)\right)^2 = \left(-\frac{2}{3}\right) \times \left(-\frac{2}{3}\right) = \frac{4}{9}
  3. Calculate Square: Next, we add 33 to the result of the square of (23)-(\frac{2}{3}).\newlinef((23))=49+3f(-(\frac{2}{3})) = \frac{4}{9} + 3\newlineTo add 33 (which is the same as 279\frac{27}{9}) to 49\frac{4}{9}, we find a common denominator, which is already 99.
  4. Add 33: We add the two fractions.\newlinef(23)=49+279=4+279=319f\left(-\frac{2}{3}\right) = \frac{4}{9} + \frac{27}{9} = \frac{4 + 27}{9} = \frac{31}{9}
  5. Final Answer: We have found the value of f(23)f\left(-\frac{2}{3}\right) in simplest form.\newlineTherefore, the final answer is f(23)=319f\left(-\frac{2}{3}\right) = \frac{31}{9}.

More problems from Find the vertex of the transformed function