Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=(7)/(6)x^(2)-4, find the value of 
f(-2) in simplest form.
Answer:

Given the function f(x)=76x24 f(x)=\frac{7}{6} x^{2}-4 , find the value of f(2) f(-2) in simplest form.\newlineAnswer:

Full solution

Q. Given the function f(x)=76x24 f(x)=\frac{7}{6} x^{2}-4 , find the value of f(2) f(-2) in simplest form.\newlineAnswer:
  1. Given Function: We are given the function f(x)=76x24f(x) = \frac{7}{6}x^2 - 4 and we need to find the value of f(2)f(-2). To do this, we will substitute xx with 2-2 in the function and simplify.
  2. Substitute xx with 2-2: Substitute xx with 2-2 in the function f(x)=76x24f(x) = \frac{7}{6}x^2 - 4.f(2)=76(2)24f(-2) = \frac{7}{6}(-2)^2 - 4
  3. Calculate square of 2-2: Calculate the square of 2-2.(2)2=4(-2)^2 = 4
  4. Substitute value back: Substitute the value of (2)2(-2)^2 back into the function.\newlinef(2)=(76)44f(-2) = \left(\frac{7}{6}\right)*4 - 4
  5. Multiply and simplify: Multiply (76)(\frac{7}{6}) by 44.76\frac{7}{6}*4=2864 = \frac{28}{6}
  6. Simplify fraction: Simplify 28/628/6. \newline28/6=14/328/6 = 14/3
  7. Subtract to find f(2)f(-2): Subtract 44 from 143\frac{14}{3}. Since 44 is the same as 123\frac{12}{3}, we will perform the subtraction using common denominators.\newline143123=23\frac{14}{3} - \frac{12}{3} = \frac{2}{3}
  8. Final result: We have found the value of f(2)f(-2) in simplest form.f(2)=23f(-2) = \frac{2}{3}

More problems from Find the vertex of the transformed function