Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=(-5x^(3)-8x^(2)-1)(9x^(2)+1), find 
f^(')(x) in any form.
Answer: 
f^(')(x)=

Given the function f(x)=(5x38x21)(9x2+1) f(x)=\left(-5 x^{3}-8 x^{2}-1\right)\left(9 x^{2}+1\right) , find f(x) f^{\prime}(x) in any form.\newlineAnswer: f(x)= f^{\prime}(x)=

Full solution

Q. Given the function f(x)=(5x38x21)(9x2+1) f(x)=\left(-5 x^{3}-8 x^{2}-1\right)\left(9 x^{2}+1\right) , find f(x) f^{\prime}(x) in any form.\newlineAnswer: f(x)= f^{\prime}(x)=
  1. Product Rule Explanation: To find the derivative of the product of two functions, we use the product rule. The product rule states that the derivative of a product of two functions is the derivative of the first function times the second function plus the first function times the derivative of the second function.
  2. Define Functions: Let's denote the first function as u(x)=5x38x21u(x) = -5x^3 - 8x^2 - 1 and the second function as v(x)=9x2+1v(x) = 9x^2 + 1. We need to find the derivatives u(x)u'(x) and v(x)v'(x).
  3. Find Derivatives: First, we find the derivative of u(x)u(x). The derivative of 5x3-5x^3 is 15x2-15x^2, the derivative of 8x2-8x^2 is 16x-16x, and the derivative of a constant 1-1 is 00. So, u(x)=15x216xu'(x) = -15x^2 - 16x.
  4. Apply Product Rule: Next, we find the derivative of v(x)v(x). The derivative of 9x29x^2 is 18x18x, and the derivative of a constant 11 is 00. So, v(x)=18xv'(x) = 18x.
  5. Expand Expressions: Now we apply the product rule: f(x)=u(x)v(x)+u(x)v(x)f'(x) = u'(x)v(x) + u(x)v'(x). Substituting the derivatives we found, we get f(x)=(15x216x)(9x2+1)+(5x38x21)(18x)f'(x) = (-15x^2 - 16x)(9x^2 + 1) + (-5x^3 - 8x^2 - 1)(18x).
  6. Combine Like Terms: We need to expand the expressions to simplify them. First, we expand (15x216x)(9x2+1)(-15x^2 - 16x)(9x^2 + 1), which gives us 135x415x2144x316x-135x^4 - 15x^2 - 144x^3 - 16x.
  7. Final Derivative: Next, we expand (5x38x21)(18x)(-5x^3 - 8x^2 - 1)(18x), which gives us 90x4144x318x-90x^4 - 144x^3 - 18x.
  8. Final Derivative: Next, we expand (5x38x21)(18x)(-5x^3 - 8x^2 - 1)(18x), which gives us 90x4144x318x-90x^4 - 144x^3 - 18x.Now we combine like terms from both expansions. The terms 135x4-135x^4 and 90x4-90x^4 combine to 225x4-225x^4. The terms 144x3-144x^3 and 144x3-144x^3 combine to 288x3-288x^3. The terms 15x2-15x^2 and 8x2-8x^2 combine to 90x4144x318x-90x^4 - 144x^3 - 18x00. The terms 90x4144x318x-90x^4 - 144x^3 - 18x11 and 90x4144x318x-90x^4 - 144x^3 - 18x22 combine to 90x4144x318x-90x^4 - 144x^3 - 18x33.
  9. Final Derivative: Next, we expand (5x38x21)(18x)(-5x^3 - 8x^2 - 1)(18x), which gives us 90x4144x318x-90x^4 - 144x^3 - 18x.Now we combine like terms from both expansions. The terms 135x4-135x^4 and 90x4-90x^4 combine to 225x4-225x^4. The terms 144x3-144x^3 and 144x3-144x^3 combine to 288x3-288x^3. The terms 15x2-15x^2 and 8x2-8x^2 combine to 90x4144x318x-90x^4 - 144x^3 - 18x00. The terms 90x4144x318x-90x^4 - 144x^3 - 18x11 and 90x4144x318x-90x^4 - 144x^3 - 18x22 combine to 90x4144x318x-90x^4 - 144x^3 - 18x33.The final derivative 90x4144x318x-90x^4 - 144x^3 - 18x44 is then 90x4144x318x-90x^4 - 144x^3 - 18x55.

More problems from Transformations of quadratic functions