Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=-(5)/(3)x+(5)/(2)x^(3), then what is 
f(2x) as a simplified polynomial?
Answer:

Given the function f(x)=53x+52x3 f(x)=-\frac{5}{3} x+\frac{5}{2} x^{3} , then what is f(2x) f(2 x) as a simplified polynomial?\newlineAnswer:

Full solution

Q. Given the function f(x)=53x+52x3 f(x)=-\frac{5}{3} x+\frac{5}{2} x^{3} , then what is f(2x) f(2 x) as a simplified polynomial?\newlineAnswer:
  1. Substitute xx in f(x)f(x): Substitute 2x2x for xx in the function f(x)f(x). We have the function f(x)=(53)x+(52)x3f(x) = -(\frac{5}{3})x + (\frac{5}{2})x^3. To find f(2x)f(2x), we replace every instance of xx with 2x2x. f(2x)=(53)(2x)+(52)(2x)3f(2x) = -(\frac{5}{3})(2x) + (\frac{5}{2})(2x)^3
  2. Simplify by distributing and combining: Simplify the expression by distributing and combining like terms.\newlineFirst, we distribute the constants to the terms with xx.\newlinef(2x)=(53)×2x+(52)×(2x)3f(2x) = -(\frac{5}{3}) \times 2x + (\frac{5}{2}) \times (2x)^3\newlineNow, we simplify each term.\newlinef(2x)=(103)x+(52)×8x3f(2x) = -(\frac{10}{3})x + (\frac{5}{2}) \times 8x^3\newlinef(2x)=(103)x+40x3f(2x) = -(\frac{10}{3})x + 40x^3
  3. Write final simplified polynomial: Write the final simplified polynomial.\newlineThe expression is already simplified, so we can write the final answer.\newlinef(2x)=(103)x+40x3f(2x) = -(\frac{10}{3})x + 40x^3

More problems from Multiplication with rational exponents