Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=(3-x^(2))/(1+5x^(2)), find 
f^(')(x) in simplified form.
Answer: 
f^(')(x)=

Given the function f(x)=3x21+5x2 f(x)=\frac{3-x^{2}}{1+5 x^{2}} , find f(x) f^{\prime}(x) in simplified form.\newlineAnswer: f(x)= f^{\prime}(x)=

Full solution

Q. Given the function f(x)=3x21+5x2 f(x)=\frac{3-x^{2}}{1+5 x^{2}} , find f(x) f^{\prime}(x) in simplified form.\newlineAnswer: f(x)= f^{\prime}(x)=
  1. Identify function: Identify the function to differentiate.\newlineWe are given the function f(x)=3x21+5x2f(x) = \frac{3 - x^2}{1 + 5x^2}. We need to find its derivative, denoted as f(x)f'(x).
  2. Apply quotient rule: Apply the quotient rule for differentiation.\newlineThe quotient rule states that if we have a function g(x)=u(x)v(x)g(x) = \frac{u(x)}{v(x)}, then its derivative g(x)=u(x)v(x)u(x)v(x)(v(x))2g'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}. Here, u(x)=3x2u(x) = 3 - x^2 and v(x)=1+5x2v(x) = 1 + 5x^2.
  3. Differentiate numerator: Differentiate the numerator u(x)=3x2u(x) = 3 - x^2. The derivative of u(x)u(x) with respect to xx is u(x)=2xu'(x) = -2x.
  4. Differentiate denominator: Differentiate the denominator v(x)=1+5x2v(x) = 1 + 5x^2. The derivative of v(x)v(x) with respect to xx is v(x)=10xv'(x) = 10x.
  5. Apply quotient rule: Apply the quotient rule using the derivatives from steps 33 and 44.\newlinef(x)=u(x)v(x)u(x)v(x)(v(x))2f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}\newline = ((2x)(1+5x2)(3x2)(10x))(1+5x2)2\frac{((-2x)(1 + 5x^2) - (3 - x^2)(10x))}{(1 + 5x^2)^2}
  6. Expand and simplify: Expand the numerator and simplify.\newlinef(x)=2x10x330x+10x3(1+5x2)2f'(x) = \frac{-2x - 10x^3 - 30x + 10x^3}{(1 + 5x^2)^2}\newline =2x30x(1+5x2)2= \frac{-2x - 30x}{(1 + 5x^2)^2}\newline =32x(1+5x2)2= \frac{-32x}{(1 + 5x^2)^2}
  7. Check for simplification: Check for any possible simplification.\newlineThe expression 32x(1+5x2)2-\frac{32x}{(1 + 5x^2)^2} is already in its simplest form.

More problems from Transformations of quadratic functions