Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=-2x^(3)+(7)/(4)x, find the value of 
f((3)/(2)) in simplest form.
Answer:

Given the function f(x)=2x3+74x f(x)=-2 x^{3}+\frac{7}{4} x , find the value of f(32) f\left(\frac{3}{2}\right) in simplest form.\newlineAnswer:

Full solution

Q. Given the function f(x)=2x3+74x f(x)=-2 x^{3}+\frac{7}{4} x , find the value of f(32) f\left(\frac{3}{2}\right) in simplest form.\newlineAnswer:
  1. Substitute xx into function: Substitute the value of xx into the function.\newlineWe are given f(x)=2x3+74xf(x) = -2x^{3} + \frac{7}{4}x and we need to find f(32)f\left(\frac{3}{2}\right). Let's substitute x=32x = \frac{3}{2} into the function.\newlinef(32)=2(32)3+(74)(32)f\left(\frac{3}{2}\right) = -2\left(\frac{3}{2}\right)^{3} + \left(\frac{7}{4}\right)\left(\frac{3}{2}\right)
  2. Calculate cube of (32)(\frac{3}{2}): Calculate the cube of (32)(\frac{3}{2}).(32)3=(32)×(32)×(32)=278(\frac{3}{2})^{3} = (\frac{3}{2}) \times (\frac{3}{2}) \times (\frac{3}{2}) = \frac{27}{8}
  3. Multiply by 2-2: Multiply the result by -2").\(\newline\$-2 \times \left(\frac{27}{8}\right) = -\frac{54}{8}\)
  4. Simplify fraction \(-\frac{54}{8}\): Simplify the fraction \(-\frac{54}{8}\).\(-\frac{54}{8}\) can be simplified by dividing both the numerator and the denominator by \(2\).\(-\frac{54}{8} = -\frac{27}{4}\)
  5. Multiply \((\frac{7}{4})\) by \((\frac{\(3\)}{\(2\)}): Multiply \((\frac{7}{4})\) by \((\frac{3}{2}).\(\newline\)\$(\frac{7}{4}) \times (\frac{3}{2}) = \frac{21}{8}\)
  6. Add results: Add the two results together.\(\newline\)\(f\left(\frac{3}{2}\right) = -\frac{27}{4} + \frac{21}{8}\)\(\newline\)To add these two fractions, we need a common denominator. The common denominator for \(4\) and \(8\) is \(8\).
  7. Convert \(-\frac{27}{4}\) to fraction: Convert \(-\frac{27}{4}\) to a fraction with a denominator of \(8\).\(-\frac{27}{4} = -\frac{27}{4} \times \frac{2}{2} = -\frac{54}{8}\)
  8. Add fractions: Add the fractions with the common denominator.\(\newline\)\(f\left(\frac{3}{2}\right) = -\frac{54}{8} + \frac{21}{8}\)\(\newline\)\(f\left(\frac{3}{2}\right) = \frac{-54 + 21}{8}\)\(\newline\)\(f\left(\frac{3}{2}\right) = -\frac{33}{8}\)

More problems from Multiplication with rational exponents