Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=2x^(2)-3x^(3), find the value of 
f(-(1)/(2)) in simplest form.
Answer:

Given the function f(x)=2x23x3 f(x)=2 x^{2}-3 x^{3} , find the value of f(12) f\left(-\frac{1}{2}\right) in simplest form.\newlineAnswer:

Full solution

Q. Given the function f(x)=2x23x3 f(x)=2 x^{2}-3 x^{3} , find the value of f(12) f\left(-\frac{1}{2}\right) in simplest form.\newlineAnswer:
  1. Substitute xx: Substitute xx with (12)-\left(\frac{1}{2}\right) in the function f(x)=2x23x3.f(x) = 2x^2 - 3x^3.\newlinef\left(-\left(\frac{\(1\)}{\(2\)}\right)\right) = \(2\left(-\frac{11}{22}\right)^22 - 33\left(-\frac{11}{22}\right)^33
  2. Calculate square and cube: Calculate the square and cube of (1/2)-(1/2). (1/2)2=(1/4)(-1/2)^2 = (1/4) and (1/2)3=(1/8)(-1/2)^3 = -(1/8)
  3. Replace exponents in function: Replace the exponents in the function with their calculated values.\newlinef(12)=2(14)3(18)f(-\frac{1}{2}) = 2(\frac{1}{4}) - 3(-\frac{1}{8})
  4. Multiply coefficients by exponents: Multiply the coefficients by the calculated exponents.\newlinef(12)=211431(18)f\left(-\frac{1}{2}\right) = \frac{2}{1}\cdot\frac{1}{4} - \frac{3}{1}\cdot\left(-\frac{1}{8}\right)\newlinef(12)=12(38)f\left(-\frac{1}{2}\right) = \frac{1}{2} - \left(-\frac{3}{8}\right)
  5. Simplify expression: Simplify the expression by adding the fractions.\newlinef(12)=12+38f(-\frac{1}{2}) = \frac{1}{2} + \frac{3}{8}\newlineTo add these fractions, find a common denominator.
  6. Find common denominator: The common denominator for 22 and 88 is 88.\newlineConvert 12\frac{1}{2} to a fraction with a denominator of 88.\newline12=48\frac{1}{2} = \frac{4}{8}
  7. Convert 12\frac{1}{2} to fraction: Add the fractions with the common denominator.\newlinef((12))=48+38f\left(-\left(\frac{1}{2}\right)\right) = \frac{4}{8} + \frac{3}{8}\newlinef((12))=78f\left(-\left(\frac{1}{2}\right)\right) = \frac{7}{8}

More problems from Multiplication with rational exponents