Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=-(1)/(4)x^(2)+4, find the value of 
f(-1) in simplest form.
Answer:

Given the function f(x)=14x2+4 f(x)=-\frac{1}{4} x^{2}+4 , find the value of f(1) f(-1) in simplest form.\newlineAnswer:

Full solution

Q. Given the function f(x)=14x2+4 f(x)=-\frac{1}{4} x^{2}+4 , find the value of f(1) f(-1) in simplest form.\newlineAnswer:
  1. Substitute xx with 1-1: Substitute xx with 1-1 in the function f(x)=(14)x2+4f(x) = -(\frac{1}{4})x^2 + 4. Reasoning: To find f(1)f(-1), we need to replace xx with 1-1 in the function and simplify. Calculation: f(1)=(14)(1)2+4=(14)(1)+4=14+4f(-1) = -(\frac{1}{4})(-1)^2 + 4 = -(\frac{1}{4})(1) + 4 = -\frac{1}{4} + 4
  2. Convert 44 to fraction: Convert 44 to a fractions" target="_blank" class="backlink">fraction with a denominator of 44 to combine with 14-\frac{1}{4}.\newlineReasoning: To add or subtract fractions, they must have a common denominator.\newlineCalculation: 4=1644 = \frac{16}{4}, so 14+4-\frac{1}{4} + 4 becomes 14+164-\frac{1}{4} + \frac{16}{4}
  3. Add the fractions: Add the fractions 14-\frac{1}{4} and 164\frac{16}{4}.\newlineReasoning: Now that we have a common denominator, we can add the numerators.\newlineCalculation: 14+164=1614=154-\frac{1}{4} + \frac{16}{4} = \frac{16 - 1}{4} = \frac{15}{4}

More problems from Find the vertex of the transformed function