Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f(x)=-(1)/(2)x+1, find the value of 
f(-(2)/(3)) in simplest form.
Answer:

Given the function f(x)=12x+1 f(x)=-\frac{1}{2} x+1 , find the value of f(23) f\left(-\frac{2}{3}\right) in simplest form.\newlineAnswer:

Full solution

Q. Given the function f(x)=12x+1 f(x)=-\frac{1}{2} x+1 , find the value of f(23) f\left(-\frac{2}{3}\right) in simplest form.\newlineAnswer:
  1. Substitute xx in function: Substitute the value of xx with 23-\frac{2}{3} in the function f(x)f(x).
    f(x)=12x+1f(x) = -\frac{1}{2}x + 1
    f\left(-\frac{\(2\)}{\(3\)}\right) = -\frac{\(1\)}{\(2\)}\cdot\left(-\frac{\(2\)}{\(3\)}\right) + \(1
  2. Multiply constants: Multiply the constants 12-\frac{1}{2} and 23-\frac{2}{3}.
    f(23)=(12)(23)+1f\left(-\frac{2}{3}\right) = \left(\frac{1}{2}\right)\left(\frac{2}{3}\right) + 1
    = 1×22×3+1\frac{1\times 2}{2\times 3} + 1
    = 13+1\frac{1}{3} + 1
  3. Add to get final result: Add 11 to 13\frac{1}{3} to get the final result.\newlinef(23)=13+1f\left(-\frac{2}{3}\right) = \frac{1}{3} + 1\newline=13+33= \frac{1}{3} + \frac{3}{3}\newline=1+33= \frac{1 + 3}{3}\newline=43= \frac{4}{3}

More problems from Multiplication with rational exponents