Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the function 
f, evaluate 
f(-1),f(0),f(2), and 
f(4).

f(x)={[x^(2)-3," if "x < 2],[4+|x-6|," if "x >= 2]:}

{:[f(-1)=" Number "],[f(0)=" Number "],[f(2)=" Number "],[f(4)=" Number "]:}

Given the function f f , evaluate f(1),f(0),f(2) f(-1), f(0), f(2) , and f(4) f(4) .\newlinef(x)={x23amp; if xlt;24+x6amp; if x2 f(x)=\left\{\begin{array}{cc} x^{2}-3 &amp; \text { if } x&lt;2 \\ 4+|x-6| &amp; \text { if } x \geq 2 \end{array}\right. \newlinef(1)amp;= f(0)amp;= f(2)amp;= f(4)amp;= \begin{aligned} f(-1) &amp; =\ \\ f(0) &amp; =\ \\ f(2) &amp; =\ \\ f(4) &amp; =\\ \end{aligned}

Full solution

Q. Given the function f f , evaluate f(1),f(0),f(2) f(-1), f(0), f(2) , and f(4) f(4) .\newlinef(x)={x23 if x<24+x6 if x2 f(x)=\left\{\begin{array}{cc} x^{2}-3 & \text { if } x<2 \\ 4+|x-6| & \text { if } x \geq 2 \end{array}\right. \newlinef(1)= f(0)= f(2)= f(4)= \begin{aligned} f(-1) & =\ \\ f(0) & =\ \\ f(2) & =\ \\ f(4) & =\\ \end{aligned}
  1. Determine f(1)f(-1): Determine which part of the piecewise function to use for f(1)f(-1) since -1 < 2, use f(x)=x23f(x) = x^2 - 3.\newlineCalculation: f(1)=(1)23=13=2f(-1) = (-1)^2 - 3 = 1 - 3 = -2.
  2. Determine f(0)f(0): Determine which part of the piecewise function to use for f(0)f(0) since 0 < 2, use f(x)=x23f(x) = x^2 - 3.\newlineCalculation: f(0)=023=03=3f(0) = 0^2 - 3 = 0 - 3 = -3.
  3. Determine f(2)f(2): Determine which part of the piecewise function to use for f(2)f(2) since 222 \geq 2, use f(x)=4+x6f(x) = 4 + |x - 6|.\newlineCalculation: f(2)=4+26=4+4=8f(2) = 4 + |2 - 6| = 4 + 4 = 8.
  4. Determine f(4)f(4): Determine which part of the piecewise function to use for f(4)f(4) since 424 \geq 2, use f(x)=4+x6f(x) = 4 + |x - 6|.\newlineCalculation: f(4)=4+46=4+2=6f(4) = 4 + |4 - 6| = 4 + 2 = 6.

More problems from Transformations of quadratic functions