Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the following point on the unit circle, find the angle, to the nearest tenth of a degree (if necessary), of the terminal side through that point, 
0^(@) <= theta < 360^(@).

P=((sqrt3)/(3),-(sqrt6)/(3))
Answer:

Given the following point on the unit circle, find the angle, to the nearest tenth of a degree (if necessary), of the terminal side through that point, 0^{\circ} \leq \theta<360^{\circ} .\newlineP=(33,63) P=\left(\frac{\sqrt{3}}{3},-\frac{\sqrt{6}}{3}\right) \newlineAnswer:

Full solution

Q. Given the following point on the unit circle, find the angle, to the nearest tenth of a degree (if necessary), of the terminal side through that point, 0θ<360 0^{\circ} \leq \theta<360^{\circ} .\newlineP=(33,63) P=\left(\frac{\sqrt{3}}{3},-\frac{\sqrt{6}}{3}\right) \newlineAnswer:
  1. Identify Point P: Identify the coordinates of point P on the unit circle.\newlinePoint P has coordinates P=((33),(63))P = (\left(\frac{\sqrt{3}}{3}\right), \left(-\frac{\sqrt{6}}{3}\right)).
  2. Recognize Coordinates Correspondence: Recognize that the coordinates of point PP correspond to the cosine and sine of the angle θ\theta, respectively.cos(θ)=(33)\cos(\theta) = \left(\frac{\sqrt{3}}{3}\right) and sin(θ)=(63)\sin(\theta) = -\left(\frac{\sqrt{6}}{3}\right).
  3. Calculate Reference Angle: Calculate the reference angle θ\theta' using the arccosine of the absolute value of the x-coordinate.Θ=arccos(3/3)\Theta' = \arccos(|\sqrt{3}/3|).
  4. Perform Reference Angle Calculation: Perform the calculation for the reference angle. \newlineΘ=arccos(33)\Theta' = \arccos\left(\frac{\sqrt{3}}{3}\right). \newlineUsing a calculator, we find that Θ54.7\Theta' \approx 54.7 degrees.
  5. Determine Point Quadrant: Determine the quadrant in which point PP lies.\newlineSince the xx-coordinate is positive and the yy-coordinate is negative, point PP lies in the fourth quadrant.
  6. Find Actual Angle: Find the actual angle θ\theta by subtracting the reference angle from 360360 degrees, as the point is in the fourth quadrant.\newlineΘ=360Θ\Theta = 360 - \Theta'.
  7. Perform Angle Calculation: Perform the calculation to find the angle θ\theta.θ=36054.7\theta = 360 - 54.7.θ305.3\theta \approx 305.3 degrees.

More problems from Evaluate variable expressions for Sequences