Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the following point on the unit circle, find the angle, to the nearest tenth of a degree (if necessary), of the terminal side through that point, 
0^(@) <= theta < 360^(@).

P=((2)/(5),-(sqrt21)/(5))
Answer:

Given the following point on the unit circle, find the angle, to the nearest tenth of a degree (if necessary), of the terminal side through that point, 0^{\circ} \leq \theta<360^{\circ} .\newlineP=(25,215) P=\left(\frac{2}{5},-\frac{\sqrt{21}}{5}\right) \newlineAnswer:

Full solution

Q. Given the following point on the unit circle, find the angle, to the nearest tenth of a degree (if necessary), of the terminal side through that point, 0θ<360 0^{\circ} \leq \theta<360^{\circ} .\newlineP=(25,215) P=\left(\frac{2}{5},-\frac{\sqrt{21}}{5}\right) \newlineAnswer:
  1. Identify Coordinates: Identify the coordinates of the point PP on the unit circle.P=(25,215)P = \left(\frac{2}{5}, -\frac{\sqrt{21}}{5}\right)The xx-coordinate is 25\frac{2}{5} and the yy-coordinate is 215-\frac{\sqrt{21}}{5}.
  2. Determine Reference Angle: Determine the reference angle using the arctangent function.\newlineThe reference angle θ\theta' can be found using the arctangent of the absolute values of the y-coordinate over the x-coordinate.\newlineθ=arctan(215/25)\theta' = \arctan\left(\left|\frac{-\sqrt{21}}{5}\right| / \left|\frac{2}{5}\right|\right)\newlineθ=arctan(212)\theta' = \arctan\left(\frac{\sqrt{21}}{2}\right)
  3. Calculate Reference Angle: Calculate the reference angle in degrees.\newlineθ=arctan(212)\theta' = \arctan\left(\frac{\sqrt{21}}{2}\right)\newlineUse a calculator to find the value of θ\theta' in degrees.\newlineθarctan(2.2913)\theta' \approx \arctan(2.2913)\newlineθ66.4\theta' \approx 66.4 degrees
  4. Determine Actual Angle: Determine the actual angle θ\theta based on the quadrant where the point P lies.\newlineSince the x-coordinate is positive and the y-coordinate is negative, point P lies in the fourth quadrant.\newlineIn the fourth quadrant, the actual angle θ\theta is given by 360360 degrees minus the reference angle.\newlineθ=360\theta = 360 degrees θ- \theta'\newlineθ=360\theta = 360 degrees 66.4- 66.4 degrees
  5. Calculate Final Value: Calculate the final value of theta. \newlineθ=36066.4\theta = 360^\circ - 66.4^\circ\newlineθ=293.6\theta = 293.6^\circ

More problems from Roots of rational numbers