Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the definitions of 
f(x) and 
g(x) below, find the value of 
f(g(-9)).

{:[f(x)=2x^(2)+4x-8],[g(x)=-x-8]:}
Answer:

Given the definitions of f(x) f(x) and g(x) g(x) below, find the value of f(g(9)) f(g(-9)) .\newlinef(x)=2x2+4x8g(x)=x8 \begin{array}{l} f(x)=2 x^{2}+4 x-8 \\ g(x)=-x-8 \end{array} \newlineAnswer:

Full solution

Q. Given the definitions of f(x) f(x) and g(x) g(x) below, find the value of f(g(9)) f(g(-9)) .\newlinef(x)=2x2+4x8g(x)=x8 \begin{array}{l} f(x)=2 x^{2}+4 x-8 \\ g(x)=-x-8 \end{array} \newlineAnswer:
  1. Find g(9)g(-9): First, we need to find the value of g(9)g(-9) by substituting 9-9 into the function g(x)g(x).
    g(9)=(9)8g(-9) = -(-9) - 8
    g(9)=98g(-9) = 9 - 8
    g(9)=1g(-9) = 1
  2. Substitute g(9)g(-9) into f(x)f(x): Now that we have g(9)=1g(-9) = 1, we substitute this value into the function f(x)f(x) to find f(g(9))f(g(-9)).
    f(g(9))=f(1)f(g(-9)) = f(1)
    f(1)=2(1)2+4(1)8f(1) = 2(1)^2 + 4(1) - 8
    f(1)=2(1)+48f(1) = 2(1) + 4 - 8
    f(1)=2+48f(1) = 2 + 4 - 8
    f(1)=68f(1) = 6 - 8
    f(x)f(x)00

More problems from Write a quadratic function from its x-intercepts and another point