Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the definitions of 
f(x) and 
g(x) below, find the value of 
f(g(-4)).

{:[f(x)=-5x+9],[g(x)=2x^(2)+2x-13]:}
Answer:

Given the definitions of f(x) f(x) and g(x) g(x) below, find the value of f(g(4)) f(g(-4)) .\newlinef(x)=5x+9g(x)=2x2+2x13 \begin{array}{l} f(x)=-5 x+9 \\ g(x)=2 x^{2}+2 x-13 \end{array} \newlineAnswer:

Full solution

Q. Given the definitions of f(x) f(x) and g(x) g(x) below, find the value of f(g(4)) f(g(-4)) .\newlinef(x)=5x+9g(x)=2x2+2x13 \begin{array}{l} f(x)=-5 x+9 \\ g(x)=2 x^{2}+2 x-13 \end{array} \newlineAnswer:
  1. Find g(4)g(-4): First, we need to find the value of g(4)g(-4) by substituting x=4x = -4 into the function g(x)g(x).g(4)=2(4)2+2(4)13g(-4) = 2(-4)^2 + 2(-4) - 13
  2. Calculate g(4)g(-4): Now, let's calculate g(4)g(-4).\newlineg(4)=2(16)813g(-4) = 2(16) - 8 - 13\newlineg(4)=32813g(-4) = 32 - 8 - 13\newlineg(4)=2413g(-4) = 24 - 13\newlineg(4)=11g(-4) = 11
  3. Find f(g(4))f(g(-4)): Next, we need to find the value of f(g(4))f(g(-4)) by substituting g(4)g(-4) into the function f(x)f(x).\newlinef(g(4))=f(11)f(g(-4)) = f(11)\newlinef(11)=5(11)+9f(11) = -5(11) + 9
  4. Calculate f(11)f(11): Finally, let's calculate f(11)f(11).\newlinef(11)=55+9f(11) = -55 + 9\newlinef(11)=46f(11) = -46

More problems from Write a quadratic function from its x-intercepts and another point