Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the definitions of 
f(x) and 
g(x) below, find the value of 
f(g(0)).

{:[f(x)=3x^(2)+5x+9],[g(x)=3x-1]:}
Answer:

Given the definitions of f(x) f(x) and g(x) g(x) below, find the value of f(g(0)) f(g(0)) .\newlinef(x)=3x2+5x+9g(x)=3x1 \begin{array}{l} f(x)=3 x^{2}+5 x+9 \\ g(x)=3 x-1 \end{array} \newlineAnswer:

Full solution

Q. Given the definitions of f(x) f(x) and g(x) g(x) below, find the value of f(g(0)) f(g(0)) .\newlinef(x)=3x2+5x+9g(x)=3x1 \begin{array}{l} f(x)=3 x^{2}+5 x+9 \\ g(x)=3 x-1 \end{array} \newlineAnswer:
  1. Find g(0)g(0): First, we need to find the value of g(0)g(0) by substituting x=0x = 0 into the function g(x)g(x).\newlineg(0)=3(0)1g(0) = 3(0) - 1\newlineg(0)=1g(0) = -1
  2. Substitute g(0)g(0) into f(x)f(x): Now that we have g(0)=1g(0) = -1, we substitute this value into the function f(x)f(x) to find f(g(0))f(g(0)).\newlinef(g(0))=f(1)=3(1)2+5(1)+9f(g(0)) = f(-1) = 3(-1)^2 + 5(-1) + 9
  3. Calculate f(1)f(-1): We perform the calculations within the function f(x)f(x).
    f(1)=3(1)+5(1)+9f(-1) = 3(1) + 5(-1) + 9
    f(1)=35+9f(-1) = 3 - 5 + 9
  4. Final value of f(g(0))f(g(0)): We add the numbers to find the final value of f(g(0))f(g(0)).f(1)=35+9f(-1) = 3 - 5 + 9f(1)=2+9f(-1) = -2 + 9f(1)=7f(-1) = 7

More problems from Write a quadratic function from its x-intercepts and another point