Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the definitions of 
f(x) and 
g(x) below, find the value of 
g(f(-3)).

{:[f(x)=x^(2)+5x+13],[g(x)=-5x+4]:}
Answer:

Given the definitions of f(x) f(x) and g(x) g(x) below, find the value of g(f(3)) g(f(-3)) .\newlinef(x)=x2+5x+13g(x)=5x+4 \begin{array}{l} f(x)=x^{2}+5 x+13 \\ g(x)=-5 x+4 \end{array} \newlineAnswer:

Full solution

Q. Given the definitions of f(x) f(x) and g(x) g(x) below, find the value of g(f(3)) g(f(-3)) .\newlinef(x)=x2+5x+13g(x)=5x+4 \begin{array}{l} f(x)=x^{2}+5 x+13 \\ g(x)=-5 x+4 \end{array} \newlineAnswer:
  1. Find f(3)f(-3): First, we need to find the value of f(3)f(-3) by substituting xx with 3-3 in the function f(x)=x2+5x+13f(x) = x^2 + 5x + 13.\newlineCalculation: f(3)=(3)2+5(3)+13f(-3) = (-3)^2 + 5(-3) + 13\newlinef(3)=915+13f(-3) = 9 - 15 + 13\newlinef(3)=6+13f(-3) = -6 + 13\newlinef(3)=7f(-3) = 7
  2. Calculate g(f(3))g(f(-3)): Now that we have the value of f(3)f(-3), we can find g(f(3))g(f(-3)) by substituting the value of f(3)f(-3) into the function g(x)=5x+4g(x) = -5x + 4.
    Calculation: g(f(3))=g(7)=5(7)+4g(f(-3)) = g(7) = -5(7) + 4
    g(7)=35+4g(7) = -35 + 4
    g(7)=31g(7) = -31

More problems from Transformations of quadratic functions