Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the definitions of 
f(x) and 
g(x) below, find the value of 
f(g(4)).

{:[f(x)=x^(2)+4x+11],[g(x)=3x-11]:}
Answer:

Given the definitions of f(x) f(x) and g(x) g(x) below, find the value of f(g(4)) f(g(4)) .\newlinef(x)=x2+4x+11g(x)=3x11 \begin{array}{l} f(x)=x^{2}+4 x+11 \\ g(x)=3 x-11 \end{array} \newlineAnswer:

Full solution

Q. Given the definitions of f(x) f(x) and g(x) g(x) below, find the value of f(g(4)) f(g(4)) .\newlinef(x)=x2+4x+11g(x)=3x11 \begin{array}{l} f(x)=x^{2}+4 x+11 \\ g(x)=3 x-11 \end{array} \newlineAnswer:
  1. Find g(4)g(4): First, we need to find the value of g(4)g(4) by substituting xx with 44 in the function g(x)g(x).\newlineCalculation: g(4)=3(4)11g(4) = 3(4) - 11\newlineg(4)=1211g(4) = 12 - 11\newlineg(4)=1g(4) = 1
  2. Substitute g(4)g(4) into f(x)f(x): Now that we have the value of g(4)g(4), we need to substitute this value into the function f(x)f(x) to find f(g(4))f(g(4)).
    Calculation: f(g(4))=f(1)f(g(4)) = f(1)
    f(1)=(1)2+4(1)+11f(1) = (1)^2 + 4(1) + 11
    f(1)=1+4+11f(1) = 1 + 4 + 11
    f(1)=16f(1) = 16

More problems from Transformations of quadratic functions