Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that 
tan A=(1)/(2) and 
sin B=(6)/(sqrt85), and that angles 
A and 
B are both in Quadrant I, find the exact value of 
cos(A+B), in simplest radical form.
Answer:

Given that tanA=12 \tan A=\frac{1}{2} and sinB=685 \sin B=\frac{6}{\sqrt{85}} , and that angles A A and B B are both in Quadrant I, find the exact value of cos(A+B) \cos (A+B) , in simplest radical form.\newlineAnswer:

Full solution

Q. Given that tanA=12 \tan A=\frac{1}{2} and sinB=685 \sin B=\frac{6}{\sqrt{85}} , and that angles A A and B B are both in Quadrant I, find the exact value of cos(A+B) \cos (A+B) , in simplest radical form.\newlineAnswer:
  1. Find cosA\cos A: Use the Pythagorean identity to find cosA\cos A. Since tanA=12\tan A = \frac{1}{2}, we can represent this as opposite/adjacent in a right triangle, where the opposite side is 11 and the adjacent side is 22. To find the hypotenuse (hh), we use the Pythagorean theorem: h2=12+22h^2 = 1^2 + 2^2. Calculate the hypotenuse: h2=1+4h^2 = 1 + 4 h2=5h^2 = 5 h=5h = \sqrt{5} Now, find cosA\cos A using the adjacent side and hypotenuse: cosA\cos A11. Rationalize the denominator: cosA\cos A22.
  2. Find cosB\cos B: Use the Pythagorean identity to find cosB\cos B. Since sinB=685\sin B = \frac{6}{\sqrt{85}}, we can represent this as opposite/hypotenuse in a right triangle, where the opposite side is 66 and the hypotenuse is 85\sqrt{85}. To find the adjacent side (aa), we use the Pythagorean theorem: a2=hypotenuse2opposite2a^2 = \text{hypotenuse}^2 - \text{opposite}^2. Calculate the adjacent side: a2=(85)262a^2 = (\sqrt{85})^2 - 6^2 a2=8536a^2 = 85 - 36 a2=49a^2 = 49 cosB\cos B00 cosB\cos B11 Now, find cosB\cos B using the adjacent side and hypotenuse: cosB\cos B33. Rationalize the denominator: cosB\cos B44.
  3. Find cos(A+B)\cos(A+B): Use the angle sum formula for cosine to find cos(A+B)\cos(A+B). The formula for cos(A+B)\cos(A+B) is cosAcosBsinAsinB\cos A \cdot \cos B - \sin A \cdot \sin B. We already have cosA=255\cos A = \frac{2\sqrt{5}}{5} and cosB=78585\cos B = \frac{7\sqrt{85}}{85}. To find sinA\sin A, we use the definition of tanA=sinAcosA\tan A = \frac{\sin A}{\cos A}. Since tanA=12\tan A = \frac{1}{2} and cosA=255\cos A = \frac{2\sqrt{5}}{5}, we can solve for sinA\sin A: cos(A+B)\cos(A+B)11. Now, substitute the values into the formula: cos(A+B)\cos(A+B)22.
  4. Simplify expression: Simplify the expression for cos(A+B)\cos(A+B). First, multiply the cosines: 255×78585=14425425\frac{2\sqrt{5}}{5} \times \frac{7\sqrt{85}}{85} = \frac{14\sqrt{425}}{425}. Then, multiply the sines: 55×685=65585\frac{\sqrt{5}}{5} \times \frac{6}{\sqrt{85}} = \frac{6\sqrt{5}}{5\sqrt{85}}. Rationalize the denominator of the second term: 65585×8585=6425425\frac{6\sqrt{5}}{5\sqrt{85}} \times \frac{\sqrt{85}}{\sqrt{85}} = \frac{6\sqrt{425}}{425}. Now, subtract the second term from the first term: 144254256425425=8425425\frac{14\sqrt{425}}{425} - \frac{6\sqrt{425}}{425} = \frac{8\sqrt{425}}{425}.
  5. Check for further simplification: Check if the expression can be simplified further.\newlineThe term 425\sqrt{425} can be simplified since 425425 is not a prime number. Factor 425425 to find perfect squares: 425=25×17425 = 25 \times 17.\newlineNow, simplify 425\sqrt{425}: 425=25×17=517\sqrt{425} = \sqrt{25 \times 17} = 5\sqrt{17}.\newlineSubstitute this back into the expression for cos(A+B)\cos(A+B): cos(A+B)=8×517425\cos(A+B) = \frac{8 \times 5\sqrt{17}}{425}.\newlineSimplify the fraction: cos(A+B)=4017425\cos(A+B) = \frac{40\sqrt{17}}{425}.\newlineSince 4040 and 425425 have a common factor of 42542511, divide both numerator and denominator by 42542511: 42542533.

More problems from Find trigonometric ratios using a Pythagorean or reciprocal identity