Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that 
sin x=(sqrt24)/(6) and 
sin y=(sqrt5)/(3), and that angles 
x and 
y are both in Quadrant I, find the exact value of 
sin(x+y), in simplest radical form.
Answer:

Given that sinx=246 \sin x=\frac{\sqrt{24}}{6} and siny=53 \sin y=\frac{\sqrt{5}}{3} , and that angles x x and y y are both in Quadrant I, find the exact value of sin(x+y) \sin (x+y) , in simplest radical form.\newlineAnswer:

Full solution

Q. Given that sinx=246 \sin x=\frac{\sqrt{24}}{6} and siny=53 \sin y=\frac{\sqrt{5}}{3} , and that angles x x and y y are both in Quadrant I, find the exact value of sin(x+y) \sin (x+y) , in simplest radical form.\newlineAnswer:
  1. Use Sine Addition Formula: Use the sine addition formula.\newlineThe sine addition formula is sin(x+y)=sin(x)cos(y)+cos(x)sin(y)\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y).\newlineWe need to find cos(x)\cos(x) and cos(y)\cos(y) to use this formula.
  2. Find Cos Values: Find cos(x)\cos(x) and cos(y)\cos(y) using the Pythagorean identity.\newlineSince sin2(x)+cos2(x)=1\sin^2(x) + \cos^2(x) = 1 and sin2(y)+cos2(y)=1\sin^2(y) + \cos^2(y) = 1, we can find cos(x)\cos(x) and cos(y)\cos(y).\newlineFor xx: sin(x)=(24)/6=2(6)/6=(6)/3\sin(x) = (\sqrt{24})/6 = 2(\sqrt{6})/6 = (\sqrt{6})/3, so sin2(x)=6/9=2/3\sin^2(x) = 6/9 = 2/3.\newlineTherefore, cos2(x)=1sin2(x)=12/3=1/3\cos^2(x) = 1 - \sin^2(x) = 1 - 2/3 = 1/3.\newlineSince xx is in Quadrant I, cos(y)\cos(y)11.
  3. Substitute Values: Find cos(y)\cos(y) using the same method.\newlineFor yy: sin(y)=53\sin(y) = \frac{\sqrt{5}}{3}, so sin2(y)=59\sin^2(y) = \frac{5}{9}.\newlineTherefore, cos2(y)=1sin2(y)=159=49\cos^2(y) = 1 - \sin^2(y) = 1 - \frac{5}{9} = \frac{4}{9}.\newlineSince yy is in Quadrant I, cos(y)=49=23\cos(y) = \sqrt{\frac{4}{9}} = \frac{2}{3}.
  4. Simplify Expression: Substitute the values into the sine addition formula.\newlinesin(x+y)=sin(x)cos(y)+cos(x)sin(y)\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)\newlinesin(x+y)=(63)(23)+(33)(53)\sin(x+y) = \left(\frac{\sqrt{6}}{3}\right)\left(\frac{2}{3}\right) + \left(\frac{\sqrt{3}}{3}\right)\left(\frac{\sqrt{5}}{3}\right)
  5. Simplify Expression: Substitute the values into the sine addition formula.\newlinesin(x+y)=sin(x)cos(y)+cos(x)sin(y)\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)\newlinesin(x+y)=(63)(23)+(33)(53)\sin(x+y) = (\frac{\sqrt{6}}{3})(\frac{2}{3}) + (\frac{\sqrt{3}}{3})(\frac{\sqrt{5}}{3}) Simplify the expression.\newlinesin(x+y)=(269)+(159)\sin(x+y) = (\frac{2\sqrt{6}}{9}) + (\frac{\sqrt{15}}{9})\newlinesin(x+y)=(26+159)\sin(x+y) = (\frac{2\sqrt{6} + \sqrt{15}}{9})\newlineThis is the simplest radical form.

More problems from Find trigonometric ratios using a Pythagorean or reciprocal identity