Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that 
cos x=(3)/(sqrt10) and 
tan y=(3)/(2), and that angles 
x and 
y are both in Quadrant I, find the exact value of 
sin(x-y), in simplest radical form.
Answer:

Given that cosx=310 \cos x=\frac{3}{\sqrt{10}} and tany=32 \tan y=\frac{3}{2} , and that angles x x and y y are both in Quadrant I, find the exact value of sin(xy) \sin (x-y) , in simplest radical form.\newlineAnswer:

Full solution

Q. Given that cosx=310 \cos x=\frac{3}{\sqrt{10}} and tany=32 \tan y=\frac{3}{2} , and that angles x x and y y are both in Quadrant I, find the exact value of sin(xy) \sin (x-y) , in simplest radical form.\newlineAnswer:
  1. Find sinx\sin x: Use the Pythagorean identity to find sinx\sin x. Since cosx=310\cos x = \frac{3}{\sqrt{10}}, we can find sinx\sin x using the identity sin2(x)+cos2(x)=1\sin^2(x) + \cos^2(x) = 1. sin2(x)=1cos2(x)\sin^2(x) = 1 - \cos^2(x) sin2(x)=1(310)2\sin^2(x) = 1 - \left(\frac{3}{\sqrt{10}}\right)^2 sin2(x)=1910\sin^2(x) = 1 - \frac{9}{10} sin2(x)=1010910\sin^2(x) = \frac{10}{10} - \frac{9}{10} sin2(x)=110\sin^2(x) = \frac{1}{10} sinx\sin x00 sinx\sin x11 sinx\sin x22
  2. Find siny\sin y: Use the definition of tangent to find siny\sin y. Since tany=32\tan y = \frac{3}{2}, and tany=sinycosy\tan y = \frac{\sin y}{\cos y}, we can find siny\sin y using the Pythagorean identity sin2(y)+cos2(y)=1\sin^2(y) + \cos^2(y) = 1. Let's find cosy\cos y first: tan2(y)+1=sec2(y)\tan^2(y) + 1 = \sec^2(y) (32)2+1=1cos2(y)\left(\frac{3}{2}\right)^2 + 1 = \frac{1}{\cos^2(y)} 94+1=1cos2(y)\frac{9}{4} + 1 = \frac{1}{\cos^2(y)} siny\sin y00 siny\sin y11 siny\sin y22 siny\sin y33 Now, we can find siny\sin y: siny\sin y55 siny\sin y66 siny\sin y77
  3. Find sin(xy)\sin(x-y): Use the angle difference identity for sine to find sin(xy)\sin(x-y). The identity is sin(xy)=sinxcosycosxsiny\sin(x-y) = \sin x \cdot \cos y - \cos x \cdot \sin y. sin(xy)=110213310313\sin(x-y) = \frac{1}{\sqrt{10}} \cdot \frac{2}{\sqrt{13}} - \frac{3}{\sqrt{10}} \cdot \frac{3}{\sqrt{13}} sin(xy)=21309130\sin(x-y) = \frac{2}{\sqrt{130}} - \frac{9}{\sqrt{130}} sin(xy)=29130\sin(x-y) = \frac{2 - 9}{\sqrt{130}} sin(xy)=7130\sin(x-y) = -\frac{7}{\sqrt{130}}
  4. Rationalize sin(xy)\sin(x-y): Rationalize the denominator of sin(xy)\sin(x-y). To rationalize the denominator, multiply the numerator and the denominator by 130\sqrt{130}. sin(xy)=7130×130130\sin(x-y) = \frac{-7}{\sqrt{130}} \times \frac{\sqrt{130}}{\sqrt{130}} sin(xy)=7×130130\sin(x-y) = \frac{-7\times\sqrt{130}}{130}

More problems from Find trigonometric ratios using a Pythagorean or reciprocal identity