Q. Given that cosx=103 and tany=23, and that angles x and y are both in Quadrant I, find the exact value of sin(x−y), in simplest radical form.Answer:
Find sinx: Use the Pythagorean identity to find sinx. Since cosx=103, we can find sinx using the identity sin2(x)+cos2(x)=1. sin2(x)=1−cos2(x)sin2(x)=1−(103)2sin2(x)=1−109sin2(x)=1010−109sin2(x)=101sinx0sinx1sinx2
Find siny: Use the definition of tangent to find siny. Since tany=23, and tany=cosysiny, we can find siny using the Pythagorean identity sin2(y)+cos2(y)=1. Let's find cosy first: tan2(y)+1=sec2(y)(23)2+1=cos2(y)149+1=cos2(y)1siny0siny1siny2siny3 Now, we can find siny: siny5siny6siny7
Find sin(x−y): Use the angle difference identity for sine to find sin(x−y). The identity is sin(x−y)=sinx⋅cosy−cosx⋅siny. sin(x−y)=101⋅132−103⋅133sin(x−y)=1302−1309sin(x−y)=1302−9sin(x−y)=−1307
Rationalize sin(x−y): Rationalize the denominator of sin(x−y). To rationalize the denominator, multiply the numerator and the denominator by 130. sin(x−y)=130−7×130130sin(x−y)=130−7×130
More problems from Find trigonometric ratios using a Pythagorean or reciprocal identity