Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given that 
cos A=(sqrt20)/(5) and 
cos B=(sqrt6)/(3), and that angles 
A and 
B are both in Quadrant I, find the exact value of 
sin(A-B), in simplest radical form.
Answer:

Given that cosA=205 \cos A=\frac{\sqrt{20}}{5} and cosB=63 \cos B=\frac{\sqrt{6}}{3} , and that angles A A and B B are both in Quadrant I, find the exact value of sin(AB) \sin (A-B) , in simplest radical form.\newlineAnswer:

Full solution

Q. Given that cosA=205 \cos A=\frac{\sqrt{20}}{5} and cosB=63 \cos B=\frac{\sqrt{6}}{3} , and that angles A A and B B are both in Quadrant I, find the exact value of sin(AB) \sin (A-B) , in simplest radical form.\newlineAnswer:
  1. Apply Cosine Subtraction Formula: Use the cosine subtraction formula.\newlineThe cosine subtraction formula is cos(AB)=cos(A)cos(B)+sin(A)sin(B)\cos(A - B) = \cos(A)\cos(B) + \sin(A)\sin(B).\newlineWe will use this formula to find sin(AB)\sin(A - B) by expressing sin(A)\sin(A) and sin(B)\sin(B) in terms of cos(A)\cos(A) and cos(B)\cos(B).
  2. Find sin(A)\sin(A) and sin(B)\sin(B): Find sin(A)\sin(A) and sin(B)\sin(B) using the Pythagorean identity.\newlineSince AA and BB are in Quadrant I, sin(A)\sin(A) and sin(B)\sin(B) will be positive.\newlineThe Pythagorean identity is sin2(θ)+cos2(θ)=1\sin^2(\theta) + \cos^2(\theta) = 1.\newlineFor angle AA:\newlinesin(B)\sin(B)00\newlinesin(B)\sin(B)11\newlinesin(B)\sin(B)22\newlinesin(B)\sin(B)33\newlinesin(B)\sin(B)44\newlinesin(B)\sin(B)55\newlinesin(B)\sin(B)66\newlinesin(B)\sin(B)77\newlinesin(B)\sin(B)88 (Rationalizing the denominator)
  3. Calculate sin(B): Calculate sin(B)\sin(B) using the same method.\newlineFor angle B:\newlinesin2(B)=1cos2(B)\sin^2(B) = 1 - \cos^2(B)\newlinesin2(B)=1(6/3)2\sin^2(B) = 1 - (\sqrt{6}/3)^2\newlinesin2(B)=1(6/9)\sin^2(B) = 1 - (6/9)\newlinesin2(B)=12/3\sin^2(B) = 1 - 2/3\newlinesin2(B)=1/3\sin^2(B) = 1/3\newlinesin(B)=1/3\sin(B) = \sqrt{1/3}\newlinesin(B)=1/3\sin(B) = \sqrt{1}/\sqrt{3}\newlinesin(B)=1/3\sin(B) = 1/\sqrt{3}\newlinesin(B)=3/3\sin(B) = \sqrt{3}/3 (Rationalizing the denominator)
  4. Use sin(A)\sin(A) and sin(B)\sin(B): Use the values of sin(A)\sin(A) and sin(B)\sin(B) to find sin(AB)\sin(A - B). We know that sin(AB)=sin(A)cos(B)cos(A)sin(B)\sin(A - B) = \sin(A)\cos(B) - \cos(A)\sin(B). Substitute the values we found: sin(AB)=(5/5)(6/3)(20/5)(3/3)\sin(A - B) = (\sqrt{5}/5)(\sqrt{6}/3) - (\sqrt{20}/5)(\sqrt{3}/3) sin(AB)=(30/15)(60/15)\sin(A - B) = (\sqrt{30}/15) - (\sqrt{60}/15) sin(AB)=(3060)/15\sin(A - B) = (\sqrt{30} - \sqrt{60})/15 sin(AB)=(30215)/15\sin(A - B) = (\sqrt{30} - 2\sqrt{15})/15 sin(B)\sin(B)00 sin(B)\sin(B)11 sin(B)\sin(B)11 sin(AB)=(30215)/15\sin(A - B) = (\sqrt{30} - 2\sqrt{15})/15

More problems from Find trigonometric ratios using a Pythagorean or reciprocal identity