Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given 
f(x)=-3sec(2x), find 
f^(')(x).
Answer: 
f^(')(x)=

Given f(x)=3sec(2x) f(x)=-3 \sec (2 x) , find f(x) f^{\prime}(x) .\newlineAnswer: f(x)= f^{\prime}(x)=

Full solution

Q. Given f(x)=3sec(2x) f(x)=-3 \sec (2 x) , find f(x) f^{\prime}(x) .\newlineAnswer: f(x)= f^{\prime}(x)=
  1. Recall Secant Derivative: Recall the derivative of the secant function. The derivative of sec(u)\sec(u) with respect to xx is sec(u)tan(u)\sec(u)\tan(u) times the derivative of uu with respect to xx (chain rule).
  2. Apply Chain Rule: Apply the chain rule to find the derivative of f(x)=3sec(2x)f(x) = -3\sec(2x). Let u=2xu = 2x, then the derivative of uu with respect to xx is dudx=2\frac{du}{dx} = 2. The derivative of f(x)f(x) with respect to xx is then f(x)=3ddx[sec(u)]dudxf'(x) = -3 \cdot \frac{d}{dx}[\sec(u)] \cdot \frac{du}{dx}.
  3. Calculate Derivative: Calculate the derivative using the result from Step 11.\newlinef(x)=3×sec(u)tan(u)×2f'(x) = -3 \times \sec(u)\tan(u) \times 2\newlineSince u=2xu = 2x, we substitute back to get:\newlinef(x)=3×sec(2x)tan(2x)×2f'(x) = -3 \times \sec(2x)\tan(2x) \times 2
  4. Simplify Expression: Simplify the expression for the derivative.\newlinef(x)=6sec(2x)tan(2x)f'(x) = -6 \cdot \sec(2x)\tan(2x)\newlineThis is the derivative of f(x)f(x) with respect to xx.

More problems from Transformations of absolute value functions