Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Give the equation of a circle with a diameter that has endpoints 
(10,-8) and 
(-6,0).

Give the equation of a circle with a diameter that has endpoints (10,8) (10,-8) and (6,0) (-6,0) .

Full solution

Q. Give the equation of a circle with a diameter that has endpoints (10,8) (10,-8) and (6,0) (-6,0) .
  1. Calculate Midpoint: To find the equation of a circle, we need the center and the radius. The center of the circle is the midpoint of the diameter. Let's calculate the midpoint of the diameter with endpoints (1010,8-8) and (6-6,00).\newlineMidpoint formula: M=(x1+x22,y1+y22) M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \newlineM=(10+(6)2,8+02) M = \left( \frac{10 + (-6)}{2}, \frac{-8 + 0}{2} \right) \newlineM=(42,82) M = \left( \frac{4}{2}, \frac{-8}{2} \right) \newlineM=(2,4) M = (2, -4)
  2. Find Radius: Now that we have the center of the circle, we need to find the radius. The radius is half the length of the diameter. We can calculate the length of the diameter using the distance formula and then divide by 22 to get the radius.\newlineDistance formula: d=(x2x1)2+(y2y1)2 d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \newlined=(610)2+(0(8))2 d = \sqrt{(-6 - 10)^2 + (0 - (-8))^2} \newlined=(16)2+(8)2 d = \sqrt{(-16)^2 + (8)^2} \newlined=256+64 d = \sqrt{256 + 64} \newlined=320 d = \sqrt{320} \newlineRadius r=d2=3202 r = \frac{d}{2} = \frac{\sqrt{320}}{2}
  3. Simplify Radius: We can simplify the expression for the radius by factoring out perfect squares from under the radical.\newline320=645 \sqrt{320} = \sqrt{64 \cdot 5} \newline320=645 \sqrt{320} = \sqrt{64} \cdot \sqrt{5} \newline320=85 \sqrt{320} = 8\sqrt{5} \newlineSo the radius r=852=45 r = \frac{8\sqrt{5}}{2} = 4\sqrt{5}
  4. Write Circle Equation: With the center (22, 4-4) and the radius 45 4\sqrt{5} , we can write the equation of the circle in the standard form: (xh)2+(yk)2=r2 (x - h)^2 + (y - k)^2 = r^2 , where (h, k) is the center and r is the radius.\newline(x2)2+(y+4)2=(45)2 (x - 2)^2 + (y + 4)^2 = (4\sqrt{5})^2 \newline(x2)2+(y+4)2=165 (x - 2)^2 + (y + 4)^2 = 16 \cdot 5 \newline(x2)2+(y+4)2=80 (x - 2)^2 + (y + 4)^2 = 80

More problems from Write a quadratic function from its x-intercepts and another point