Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify: g(x)=3x^(3)cos x-2x sin x+5csc x

Simplify: g(x)=3x3cosx2xsinx+5cscxg(x)=3x^{3}\cos x-2x \sin x+5\csc x

Full solution

Q. Simplify: g(x)=3x3cosx2xsinx+5cscxg(x)=3x^{3}\cos x-2x \sin x+5\csc x
  1. Apply Product Rule: Step 11: Differentiate each term of g(x)g(x) using the product rule and the chain rule.\newlineFor the first term, 3x3cos(x)3x^3 \cos(x), apply the product rule:\newlineddx[3x3cos(x)]=3x3(sin(x))+33x2cos(x)=3x3sin(x)+9x2cos(x)\frac{d}{dx} [3x^3 \cos(x)] = 3x^3 (-\sin(x)) + 3\cdot3x^2 \cos(x) = -3x^3 \sin(x) + 9x^2 \cos(x).
  2. Apply Product Rule: Step 22: Differentiate the second term, 2xsin(x)-2x \sin(x). Using the product rule: ddx[2xsin(x)]=2xcos(x)2sin(x)\frac{d}{dx} [-2x \sin(x)] = -2x \cos(x) - 2 \sin(x).
  3. Apply Chain Rule: Step 33: Differentiate the third term, 5csc(x)5 \csc(x). Using the chain rule: ddx[5csc(x)]=5(csc(x)cot(x))\frac{d}{dx} [5 \csc(x)] = 5 (-\csc(x)\cot(x)).
  4. Combine Differentiated Terms: Step 44: Combine all the differentiated terms.\newlineg(x)=3x3sin(x)+9x2cos(x)2xcos(x)2sin(x)5csc(x)cot(x)g'(x) = -3x^3 \sin(x) + 9x^2 \cos(x) - 2x \cos(x) - 2 \sin(x) - 5 \csc(x)\cot(x).

More problems from Solve complex trigonomentric equations