Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

g(n)=25-49(n-1)
Complete the recursive formula of 
g(n).

{:[g(1)=◻],[g(n)=g(n-1)+]:}

g(n)=2549(n1) g(n)=25-49(n-1) \newlineComplete the recursive formula of g(n) g(n) .\newlineg(1)= g(1)= \newlineg(n)=g(n1)+ g(n)=g(n-1)+

Full solution

Q. g(n)=2549(n1) g(n)=25-49(n-1) \newlineComplete the recursive formula of g(n) g(n) .\newlineg(1)= g(1)= \newlineg(n)=g(n1)+ g(n)=g(n-1)+
  1. Find g(1)g(1): To find the recursive formula for g(n)g(n), we first need to determine the value of g(1)g(1) by substituting n=1n = 1 into the given function.\newlineg(1)=2549(11)g(1) = 25 - 49(1 - 1)\newlineg(1)=2549(0)g(1) = 25 - 49(0)\newlineg(1)=250g(1) = 25 - 0\newlineg(1)=25g(1) = 25
  2. Express in terms of g(n1)g(n-1): Now that we have g(1)g(1), we need to express g(n)g(n) in terms of g(n1)g(n-1). We start by writing the given function for g(n)g(n) and g(n1)g(n-1).\newlineg(n)=2549(n1)g(n) = 25 - 49(n - 1)\newlineg(n1)=2549((n1)1)g(n-1) = 25 - 49((n-1) - 1)
  3. Simplify g(n1)g(n-1): Next, we simplify the expression for g(n1)g(n-1) to find a relationship between g(n)g(n) and g(n1)g(n-1).g(n1)=2549(n11)g(n-1) = 25 - 49(n - 1 - 1)g(n1)=2549(n2)g(n-1) = 25 - 49(n - 2)
  4. Find the difference: Now we need to find the difference between g(n)g(n) and g(n1)g(n-1) to determine the recursive part of the formula.\newlineDifference = g(n)g(n1)g(n) - g(n-1)\newlineDifference = [2549(n1)][2549(n2)][25 - 49(n - 1)] - [25 - 49(n - 2)]
  5. Simplify the difference: We simplify the difference to find the recursive relationship.\newlineDifference = 2549n+4925+49n9825 - 49n + 49 - 25 + 49n - 98\newlineDifference = 49-49
  6. Write the recursive formula: Since the difference between g(n)g(n) and g(n1)g(n-1) is 49-49, we can write the recursive formula as follows:\newlineg(n)=g(n1)49g(n) = g(n-1) - 49
  7. Combine initial condition: Finally, we combine the initial condition g(1)=25g(1) = 25 with the recursive relationship to complete the recursive formula.\newlineg(1)=25g(1) = 25\newlineg(n)=g(n1)49g(n) = g(n-1) - 49 for n > 1

More problems from Write a formula for an arithmetic sequence