Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

g(n)=1+5(n-1)
Complete the recursive formula of 
g(n).

{:[g(1)=◻],[g(n)=g(n-1)+]:}

g(n)=1+5(n1) g(n)=1+5(n-1) \newlineComplete the recursive formula of g(n) g(n) .\newlineg(1)= g(1)= \newlineg(n)=g(n1)+ g(n)=g(n-1)+

Full solution

Q. g(n)=1+5(n1) g(n)=1+5(n-1) \newlineComplete the recursive formula of g(n) g(n) .\newlineg(1)= g(1)= \newlineg(n)=g(n1)+ g(n)=g(n-1)+
  1. Determine g(1)g(1): Determine the value of g(1)g(1) by substituting n=1n=1 into the given formula.\newlineg(1)=1+5(11)g(1) = 1 + 5(1 - 1)\newlineg(1)=1+5(0)g(1) = 1 + 5(0)\newlineg(1)=1+0g(1) = 1 + 0\newlineg(1)=1g(1) = 1
  2. Express in terms of g(n1)g(n-1): Express g(n)g(n) in terms of g(n1)g(n-1) to find the recursive formula.\newlineWe know that g(n)=1+5(n1)g(n) = 1 + 5(n - 1). To express this in terms of g(n1)g(n-1), we need to relate g(n)g(n) to g(n1)g(n-1) using the given formula.\newlineg(n1)=1+5((n1)1)g(n-1) = 1 + 5((n-1) - 1)\newlineg(n1)=1+5(n2)g(n-1) = 1 + 5(n - 2)\newlineNow, we will add 55 to both sides to get g(n)g(n) from g(n1)g(n-1).\newlineg(n)g(n)22

More problems from Write a formula for an arithmetic sequence