Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify the expression below and write your answer as a single fraction.

(x^(5)-2x^(4)-48x^(3))/(x^(4)-2x^(3))*(5x^(2)-30 x+40)/(15x^(2)+30 x-360)
Answer:

Fully simplify the expression below and write your answer as a single fraction.\newlinex52x448x3x42x35x230x+4015x2+30x360 \frac{x^{5}-2 x^{4}-48 x^{3}}{x^{4}-2 x^{3}} \cdot \frac{5 x^{2}-30 x+40}{15 x^{2}+30 x-360} \newlineAnswer:

Full solution

Q. Fully simplify the expression below and write your answer as a single fraction.\newlinex52x448x3x42x35x230x+4015x2+30x360 \frac{x^{5}-2 x^{4}-48 x^{3}}{x^{4}-2 x^{3}} \cdot \frac{5 x^{2}-30 x+40}{15 x^{2}+30 x-360} \newlineAnswer:
  1. Factorize fractions: Factor the numerator and denominator of the first fraction.\newlineWe have the first fraction as (x52x448x3)/(x42x3)(x^5 - 2x^4 - 48x^3) / (x^4 - 2x^3). We can factor out an x3x^3 from both the numerator and the denominator.\newline(x52x448x3)/(x42x3)=x3(x22x48)/x3(x2)(x^5 - 2x^4 - 48x^3) / (x^4 - 2x^3) = x^3(x^2 - 2x - 48) / x^3(x - 2)
  2. Factorize quadratic expressions: Factor the quadratic expression in the numerator.\newlineThe quadratic expression x22x48x^2 - 2x - 48 can be factored into (x8)(x+6)(x - 8)(x + 6).\newlinex3(x22x48)/x3(x2)=x3(x8)(x+6)/x3(x2)x^3(x^2 - 2x - 48) / x^3(x - 2) = x^3(x - 8)(x + 6) / x^3(x - 2)
  3. Cancel common terms: Cancel out the common x3x^3 term.\newlineThe x3x^3 term in the numerator and denominator cancels out.\newlinex3(x8)(x+6)x3(x2)=(x8)(x+6)(x2)\frac{x^3(x - 8)(x + 6)}{x^3(x - 2)} = \frac{(x - 8)(x + 6)}{(x - 2)}
  4. Factorize second fraction: Factor the numerator and denominator of the second fraction.\newlineWe have the second fraction as (5x230x+40)/(15x2+30x360)(5x^2 - 30x + 40) / (15x^2 + 30x - 360). We can factor out a 55 from the numerator and a 1515 from the denominator.\newline(5x230x+40)/(15x2+30x360)=5(x26x+8)/15(x2+2x24)(5x^2 - 30x + 40) / (15x^2 + 30x - 360) = 5(x^2 - 6x + 8) / 15(x^2 + 2x - 24)
  5. Cancel common factors: Factor the quadratic expressions in the numerator and denominator.\newlineThe quadratic expression x26x+8x^2 - 6x + 8 can be factored into (x4)(x2)(x - 4)(x - 2), and x2+2x24x^2 + 2x - 24 can be factored into (x+6)(x4)(x + 6)(x - 4).\newline5(x26x+8)15(x2+2x24)=5(x4)(x2)15(x+6)(x4)\frac{5(x^2 - 6x + 8)}{15(x^2 + 2x - 24)} = \frac{5(x - 4)(x - 2)}{15(x + 6)(x - 4)}
  6. Multiply fractions: Cancel out the common factors and simplify the constants.\newlineThe (x4) (x - 4) term in the numerator and denominator cancels out, and we can simplify the constants 515 \frac{5}{15} to 13 \frac{1}{3} .\newline5(x4)(x2)15(x+6)(x4)=13(x2)(x+6) \frac{5(x - 4)(x - 2)}{15(x + 6)(x - 4)} = \frac{\frac{1}{3}(x - 2)}{(x + 6)}
  7. Cancel common terms: Multiply the simplified first fraction by the simplified second fraction.\newlineNow we multiply (x8)(x+6)/(x2)(x - 8)(x + 6) / (x - 2) by (1/3)(x2)/(x+6)(1/3)(x - 2) / (x + 6).\newline((x8)(x+6)/(x2))((1/3)(x2)/(x+6))=(x8)(x+6)(1/3)(x2)/((x2)(x+6))((x - 8)(x + 6) / (x - 2)) * ((1/3)(x - 2) / (x + 6)) = (x - 8)(x + 6)(1/3)(x - 2) / ((x - 2)(x + 6))
  8. Write final expression: Cancel out the common (x2)(x - 2) and (x+6)(x + 6) terms.\newlineThe (x2)(x - 2) and (x+6)(x + 6) terms in the numerator and denominator cancel out.\newline(x8)(x+6)(13)(x2)/((x2)(x+6))=(13)(x8)(x - 8)(x + 6)(\frac{1}{3})(x - 2) / ((x - 2)(x + 6)) = (\frac{1}{3})(x - 8)
  9. Write final expression: Cancel out the common (x2)(x - 2) and (x+6)(x + 6) terms.\newlineThe (x2)(x - 2) and (x+6)(x + 6) terms in the numerator and denominator cancel out.\newline(x8)(x+6)(13)(x2)/((x2)(x+6))=(13)(x8)(x - 8)(x + 6)(\frac{1}{3})(x - 2) / ((x - 2)(x + 6)) = (\frac{1}{3})(x - 8)Write the final simplified expression.\newlineThe final simplified expression is (13)(x8)(\frac{1}{3})(x - 8), which is the same as x83\frac{x - 8}{3}.

More problems from Multiplication with rational exponents