Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify.

(-6x^(5)y^(4))^(4)
Answer:

Fully simplify.\newline(6x5y4)4 \left(-6 x^{5} y^{4}\right)^{4} \newlineAnswer:

Full solution

Q. Fully simplify.\newline(6x5y4)4 \left(-6 x^{5} y^{4}\right)^{4} \newlineAnswer:
  1. Identify base and exponent: Identify the base and the exponent in (6x5y4)4(-6x^{5}y^{4})^{4}.\newlineIn (6x5y4)4(-6x^{5}y^{4})^{4}, the base is (6x5y4)(-6x^{5}y^{4}) and the exponent is 44.
  2. Apply power of a product rule: Apply the power of a product rule, which states that (ab)n=an×bn(ab)^n = a^n \times b^n, to the base.(\(-6x^{55}y^{44})^44 = (6-6)^44 \times (x^55)^44 \times (y^44)^44
  3. Calculate each part: Calculate each part separately.\newlineFirst, calculate (6)4(-6)^4:\newline(6)4=64(-6)^4 = 6^4, since an even power of a negative number is positive.\newline64=6×6×6×6=12966^4 = 6 \times 6 \times 6 \times 6 = 1296\newlineNext, calculate (x5)4(x^5)^4:\newline(x5)4=x5×4=x20(x^5)^4 = x^{5\times4} = x^{20}\newlineFinally, calculate (y4)4(y^4)^4:\newline(y4)4=y4×4=y16(y^4)^4 = y^{4\times4} = y^{16}
  4. Combine results: Combine the results from Step 33.\newline(6x5y4)4=1296×x20×y16(-6x^{5}y^{4})^{4} = 1296 \times x^{20} \times y^{16}

More problems from Evaluate rational exponents