Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify.

(6x^(4)y^(4))^(3)
Answer:

Fully simplify.\newline(6x4y4)3 \left(6 x^{4} y^{4}\right)^{3} \newlineAnswer:

Full solution

Q. Fully simplify.\newline(6x4y4)3 \left(6 x^{4} y^{4}\right)^{3} \newlineAnswer:
  1. Identify base and exponent: Identify the base and the exponent in the expression (6x4y4)3(6x^{4}y^{4})^{3}.\newlineIn (6x4y4)3(6x^{4}y^{4})^{3}, the base is 6x4y46x^{4}y^{4} and the exponent is 33.
  2. Apply power of product rule: Apply the power of a product rule, which states that (ab)n=anbn (ab)^n = a^n * b^n , to the base.(6x4y4)3=63(x4)3(y4)3 (6x^{4}y^{4})^{3} = 6^{3} * (x^{4})^{3} * (y^{4})^{3}
  3. Simplify each part: Simplify each part of the expression separately.\newline63=6×6×6=2166^{3} = 6 \times 6 \times 6 = 216\newline(x4)3=x4×3=x12(x^{4})^{3} = x^{4\times3} = x^{12}\newline(y4)3=y4×3=y12(y^{4})^{3} = y^{4\times3} = y^{12}
  4. Combine simplified parts: Combine the simplified parts to get the final answer.\newline(6x4y4)3=216×x12×y12(6x^{4}y^{4})^{3} = 216 \times x^{12} \times y^{12}

More problems from Evaluate rational exponents