Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify.

(-6x^(3)y^(2))^(2)
Answer:

Fully simplify.\newline(6x3y2)2 \left(-6 x^{3} y^{2}\right)^{2} \newlineAnswer:

Full solution

Q. Fully simplify.\newline(6x3y2)2 \left(-6 x^{3} y^{2}\right)^{2} \newlineAnswer:
  1. Identify base and exponent: Identify the base and the exponent in (6x3y2)2(-6x^{3}y^{2})^{2}.\newlineIn (6x3y2)2(-6x^{3}y^{2})^{2},\newlineBase: 6x3y2-6x^{3}y^{2}\newlineExponent: 22
  2. Apply power of product rule: Apply the power of a product rule, which states that (ab)n=an×bn (ab)^n = a^n \times b^n , to the base and the exponent. (6x3y2)2=(6)2×(x3)2×(y2)2(-6x^{3}y^{2})^{2} = (-6)^{2} \times (x^{3})^{2} \times (y^{2})^{2}
  3. Calculate each part: Calculate each part separately.\newline(6)2=36(-6)^2 = 36\newline(x3)2=x(32)=x6(x^{3})^2 = x^{(3*2)} = x^{6}\newline(y2)2=y(22)=y4(y^{2})^2 = y^{(2*2)} = y^{4}
  4. Multiply results together: Multiply the results together to get the final simplified expression. 36×x6×y436 \times x^{6} \times y^{4}

More problems from Evaluate rational exponents