Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify.

(-6x^(2)y^(5))^(2)
Answer:

Fully simplify.\newline(6x2y5)2 \left(-6 x^{2} y^{5}\right)^{2} \newlineAnswer:

Full solution

Q. Fully simplify.\newline(6x2y5)2 \left(-6 x^{2} y^{5}\right)^{2} \newlineAnswer:
  1. Identify base and exponent: Identify the base and the exponent in (6x2y5)2(-6x^{2}y^{5})^{2}.\newlineIn (6x2y5)2(-6x^{2}y^{5})^{2}, the base is 6x2y5-6x^{2}y^{5} and the exponent is 22.
  2. Apply power of product rule: Apply the power of a product rule, which states that (ab)n=an×bn(ab)^n = a^n \times b^n, to the base 6x2y5-6x^{2}y^{5}.(6x2y5)2=(6)2×(x2)2×(y5)2(-6x^{2}y^{5})^{2} = (-6)^{2} \times (x^{2})^{2} \times (y^{5})^{2}
  3. Calculate each part separately: Calculate each part separately.\newline(6)2=36(-6)^2 = 36 because the square of a negative number is positive.\newline(x2)2=x(22)=x4(x^{2})^2 = x^{(2*2)} = x^{4} because of the power of a power rule, which states that (am)n=a(mn)(a^m)^n = a^{(m*n)}.\newline(y5)2=y(52)=y10(y^{5})^2 = y^{(5*2)} = y^{10} for the same reason.
  4. Combine results: Combine the results from Step 33. 36×x4×y1036 \times x^{4} \times y^{10}
  5. Write final simplified expression: Write the final simplified expression.\newlineThe simplified form is 36x4y1036x^{4}y^{10}.

More problems from Evaluate rational exponents