Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify.

(-6x^(2)y^(4))^(4)
Answer:

Fully simplify.\newline(6x2y4)4 \left(-6 x^{2} y^{4}\right)^{4} \newlineAnswer:

Full solution

Q. Fully simplify.\newline(6x2y4)4 \left(-6 x^{2} y^{4}\right)^{4} \newlineAnswer:
  1. Identify base and exponent: Identify the base and the exponent in (6x2y4)4(-6x^{2}y^{4})^{4}.\newlineIn (6x2y4)4(-6x^{2}y^{4})^{4}, the base is 6x2y4-6x^{2}y^{4} and the exponent is 44.
  2. Apply power of power rule: Apply the power of a power rule, which states that (am)n=amn(a^m)^n = a^{m*n}.\newline(6x2y4)4=(6)4(x2)4(y4)4(-6x^{2}y^{4})^{4} = (-6)^4 * (x^{2})^4 * (y^{4})^4
  3. Calculate each part: Calculate each part separately.\newlineFirst, calculate (6)4(-6)^4:\newline(6)4=64(-6)^4 = 6^4, because the negative sign becomes positive when raised to an even power.\newline64=6×6×6×6=12966^4 = 6\times6\times6\times6 = 1296\newlineNext, calculate (x2)4(x^{2})^4:\newline(x2)4=x2×4=x8(x^{2})^4 = x^{2\times4} = x^8\newlineFinally, calculate (y4)4(y^{4})^4:\newline(y4)4=y4×4=y16(y^{4})^4 = y^{4\times4} = y^{16}
  4. Combine results: Combine the results from Step 33.\newline(6x2y4)4=1296×x8×y16(-6x^{2}y^{4})^{4} = 1296 \times x^{8} \times y^{16}

More problems from Evaluate rational exponents