Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify.

(5x^(2)y^(2))^(3)
Answer:

Fully simplify.\newline(5x2y2)3 \left(5 x^{2} y^{2}\right)^{3} \newlineAnswer:

Full solution

Q. Fully simplify.\newline(5x2y2)3 \left(5 x^{2} y^{2}\right)^{3} \newlineAnswer:
  1. Identify Base and Exponent: Identify the base and the exponent in (5x2y2)3(5x^{2}y^{2})^{3}.\newlineIn (5x2y2)3(5x^{2}y^{2})^{3}, the base is 5x2y25x^{2}y^{2} and the exponent is 33.
  2. Apply Power Rule: Apply the power of a product rule.\newlineThe power of a product rule states that (ab)n=anbn (ab)^n = a^n * b^n . Here, we have three factors inside the parentheses: 55, x2x^2, and y2y^2. We will raise each factor to the power of 33.\newline(5x2y2)3=53(x2)3(y2)3(5x^{2}y^{2})^{3} = 5^3 * (x^2)^3 * (y^2)^3
  3. Calculate Powers: Calculate the powers.\newline53=5×5×5=1255^3 = 5 \times 5 \times 5 = 125\newline(x2)3=x(2×3)=x6(x^2)^3 = x^{(2\times3)} = x^6\newline(y2)3=y(2×3)=y6(y^2)^3 = y^{(2\times3)} = y^6
  4. Combine Results: Combine the results.\newlineCombine the results from Step 33 to get the final simplified expression.\newline125×x6×y6125 \times x^6 \times y^6

More problems from Evaluate rational exponents