Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify.

(4xy^(2))^(4)
Answer:

Fully simplify.\newline(4xy2)4 \left(4 x y^{2}\right)^{4} \newlineAnswer:

Full solution

Q. Fully simplify.\newline(4xy2)4 \left(4 x y^{2}\right)^{4} \newlineAnswer:
  1. Identify base and exponent: Identify the base and the exponent in 4xy^{2})^{4}\. In \$4xy^{2})^{4}\, the base is \$4xy^{2} and the exponent is 4{4}.
  2. Apply power of power rule: Apply the power of a power rule.\newlineThe power of a power rule states that (am)n=amn(a^{m})^{n} = a^{m*n}. Therefore, we can distribute the exponent of 44 to each factor inside the parentheses.\newline(4xy2)4=44×(x1)4×(y2)4(4xy^{2})^{4} = 4^{4} \times (x^{1})^{4} \times (y^{2})^{4}
  3. Simplify each term: Simplify each term.\newlineNow we will simplify each term separately.\newline44=4×4×4×4=2564^{4} = 4 \times 4 \times 4 \times 4 = 256\newline(x1)4=x1×4=x4(x^{1})^{4} = x^{1\times4} = x^{4}\newline(y2)4=y2×4=y8(y^{2})^{4} = y^{2\times4} = y^{8}
  4. Combine simplified terms: Combine the simplified terms.\newlineNow we combine the simplified terms to get the final answer.\newline(4xy2)4=256x4y8(4xy^{2})^{4} = 256x^{4}y^{8}

More problems from Evaluate rational exponents