Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify.

(4x^(5)+y^(3))^(2)
Answer:

Fully simplify.\newline(4x5+y3)2 \left(4 x^{5}+y^{3}\right)^{2} \newlineAnswer:

Full solution

Q. Fully simplify.\newline(4x5+y3)2 \left(4 x^{5}+y^{3}\right)^{2} \newlineAnswer:
  1. Apply binomial expansion: Apply the binomial expansion to the expression (4x5+y3)2(4x^{5}+y^{3})^{2}. When we square a binomial, we use the formula (a+b)2=a2+2ab+b2(a+b)^{2} = a^{2} + 2ab + b^{2}. Here, a=4x5a = 4x^{5} and b=y3b = y^{3}.
  2. Calculate first term square: Calculate the square of the first term (4x5)2(4x^5)^2.(4x5)2=16x(52)=16x10(4x^5)^2 = 16x^{(5*2)} = 16x^{10}.
  3. Calculate product of terms: Calculate the product of the two terms multiplied by 22, which is 2×(4x5)×(y3)2 \times (4x^5) \times (y^3).\newline2×(4x5)×(y3)=8x5y32 \times (4x^5) \times (y^3) = 8x^5y^3.
  4. Calculate second term square: Calculate the square of the second term (y3)2(y^3)^2.(y3)2=y(32)=y6(y^3)^2 = y^{(3*2)} = y^6.
  5. Combine results for final form: Combine the results from steps 22, 33, and 44 to get the final expanded form.\newline(4x^{5}+y^{3})^{2} = (4x^5)^2 + 2\cdot(4x^5)\cdot(y^3) + (y^3)^2\(\newline= 16x^{10} + 8x^5\cdot y^3 + y^6\).

More problems from Evaluate rational exponents