Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify.

(4x^(4)y^(3))^(5)
Answer:

Fully simplify.\newline(4x4y3)5 \left(4 x^{4} y^{3}\right)^{5} \newlineAnswer:

Full solution

Q. Fully simplify.\newline(4x4y3)5 \left(4 x^{4} y^{3}\right)^{5} \newlineAnswer:
  1. Identify base and exponent: Identify the base and the exponent in the expression 4x^{4}y^{3})^{5}\. In \$4x^{4}y^{3})^{5}\, the base is \$4x^{4}y^{3} and the exponent is 5{5}.
  2. Apply power of product rule: Apply the power of a product rule, which states that (ab)n=an×bn(ab)^n = a^n \times b^n, to the expression.\newline(\(4x^{44}y^{33})^{55} = 44^55 \times (x^{44})^55 \times (y^{33})^55
  3. Calculate powers separately: Calculate the powers separately.\newline45=4×4×4×4×4=10244^5 = 4 \times 4 \times 4 \times 4 \times 4 = 1024\newline(x4)5=x4×5=x20(x^{4})^5 = x^{4\times5} = x^{20}\newline(y3)5=y3×5=y15(y^{3})^5 = y^{3\times5} = y^{15}
  4. Combine results for final expression: Combine the results from Step 33 to get the final simplified expression.\newline(4x4y3)5=1024×x20×y15(4x^{4}y^{3})^{5} = 1024 \times x^{20} \times y^{15}

More problems from Evaluate rational exponents