Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Fully simplify.

4x^(4)y^(2)(4xy^(4))
Answer:

Fully simplify.\newline4x4y2(4xy4) 4 x^{4} y^{2}\left(4 x y^{4}\right) \newlineAnswer:

Full solution

Q. Fully simplify.\newline4x4y2(4xy4) 4 x^{4} y^{2}\left(4 x y^{4}\right) \newlineAnswer:
  1. Write Expression: Write down the expression to be simplified.\newlineThe expression given is 4x4y2(4xy4)4x^{4}y^{2}(4xy^{4}).
  2. Distribute Exponents: Distribute the exponents across the terms inside the parentheses.\newlineUsing the distributive property of exponents, we multiply the exponents of like bases when multiplying two powers with the same base.\newline(4x4y2)(4xy4)=44x4+1y2+4(4x^{4}y^{2})(4xy^{4}) = 4\cdot4 \cdot x^{4+1} \cdot y^{2+4}
  3. Perform Multiplication: Perform the multiplication of the coefficients and add the exponents of like bases.\newline4×4=164\times4 = 16\newlinex(4+1)=x5x^{(4+1)} = x^5\newliney(2+4)=y6y^{(2+4)} = y^6\newlineSo, the expression becomes 16x5y616x^5y^6.
  4. Final Simplified Expression: Write down the final simplified expression.\newlineThe fully simplified form of the expression is 16x5y616x^5y^6.

More problems from Evaluate rational exponents